30 research outputs found

    Floquet control of optomechanical bistability in multimode systems

    Full text link
    Cavity optomechanical systems enable fine manipulation of nanomechanical degrees of freedom with light, adding operational functionality and impacting their appeal in photonic technologies. We show that distinct mechanical modes can be exploited with a temporally modulated laser drive to steer between bistable steady states induced by changes of cavity radiation pressure. We investigate the influence of thermo-optic nonlinearity on these Floquet dynamics and find that it can inhibit or enhance the performance of the coupling mechanism in contrast to their often performance limiting character. Our results provide new techniques for the characterization of thermal properties and the control of optomechanical systems in sensing and computational application

    Ultra-low threshold polariton lasing in photonic crystal cavities

    Full text link
    The authors show clear experimental evidence of lasing of exciton polaritons confined in L3 photonic crystal cavities. The samples are based on an InP membrane in air containing five InAsP quantum wells. Polariton lasing is observed with thresholds as low as 120 nW, below the Mott transition, while conventional photon lasing is observed for a pumping power one to three orders of magnitude higher.Comment: 4 pages, 3 figure

    Thermal Excitation of Broadband and Long-range Surface Waves on SiO 2 Submicron Films

    Full text link
    We detect thermally excited surfaces waves on a submicron SiO 2 layer, including Zenneck and guided modes in addition to Surface Phonon Polaritons. The measurements show the existence of these hybrid thermal-electromagnetic waves from near-(2.7 μ\mum) to far-(11.2 μ\mum) infrared. Their propagation distances reach values on the order of the millimeter, several orders of magnitude larger than on semi-infinite systems. These two features, spectral broadness and long range propagation, make these waves good candidates for near-field applications both in optics and thermics due to their dual nature.Comment: Applied Physics Letters, American Institute of Physics, 201

    Ultra-low-noise Microwave to Optics Conversion in Gallium Phosphide

    Full text link
    Mechanical resonators can act as excellent intermediaries to interface single photons in the microwave and optical domains due to their high quality factors. Nevertheless, the optical pump required to overcome the large energy difference between the frequencies can add significant noise to the transduced signal. Here we exploit the remarkable properties of thin-film gallium phosphide to demonstrate on-chip microwave-to-optical conversion, realised by piezoelectric actuation of a Gigahertz-frequency optomechanical resonator. The large optomechanical coupling and the suppression of two-photon absorption in the material allows us to operate the device at optomechanical cooperativities greatly exceeding one, and, when using a pulsed upconversion pump, induce less than one thermal noise phonon. We include a high-impedance on-chip matching resonator to mediate the mechanical load with the 50-Ohm source. Our results establish gallium phosphide as a versatile platform for ultra-low-noise conversion of photons between microwave and optical frequencies

    Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C-band

    Full text link
    We report on the control of the spontaneous emission dynamics from InAsP self-assembled quantum dots emitting in the telecommunications C-band and weakly coupled to the mode of a double heterostructure cavity etched on a suspended InP membrane at room temperature. The quality factor of the cavity mode is 44x10^3 with an ultra-low modal volume of the order of 1.2 lambda/n)^3, inducing an enhancement of the spontaneous emission rate of up a factor of 2.8 at 300 K
    corecore