275 research outputs found

    X-ray variability analysis of a large series of XMM-Newton + NuSTAR observations of NGC 3227

    Get PDF
    We present a series of X-ray variability results from a long XMM-Newton + NuSTAR campaign on the bright, variable AGN NGC 3227. We present an analysis of the lightcurves, showing that the source displays typically softer-when-brighter behaviour, although also undergoes significant spectral hardening during one observation which we interpret as due to an occultation event by a cloud of absorbing gas. We spectrally decompose the data and show that the bulk of the variability is continuum-driven and, through rms variability analysis, strongly enhanced in the soft band. We show that the source largely conforms to linear rms-flux behaviour and we compute X-ray power spectra, detecting moderate evidence for a bend in the power spectrum, consistent with existing scaling relations. Additionally, we compute X-ray Fourier time lags using both the XMM-Newton and - through maximum-likelihood methods - NuSTAR data, revealing a strong low-frequency hard lag and evidence for a soft lag at higher frequencies, which we discuss in terms of reverberation models.Comment: Accepted for publication in MNRAS; 19 pages, 13 figures, 4 tables; minor typographical errors corrected and reference list update

    Origin of the X-Ray Background and AGN Unification: New Perspectives

    Full text link
    We critically review the basic assumptions of the standard model for the synthesis of the XRB in the light of new data from ultradeep surveys by Chandra and XMM, resolving major parts of it. Important constraints come in particular from the observed z-distributions of faint hard X-ray sources -- showing large excesses at redshifts (z~0.8) much lower than expected by the synthesis models -- and from their X/optical/IR SEDs combined with the IR counts of type-II AGNs. Our analysis, although supporting the general scheme which interprets the XRB as due to absorbed AGNs with broad N_H distributions, requires major revision of the other postulate of the XRB synthesis models: the AGN unification. We argue that the unification scheme based on a simple orientation effect fails at high redshifts, where galaxy activity is induced by strong interactions and mergers among gas-rich systems. This helps explaining the observational evidence that type-I and II AGNs follow different evolutionary patterns, with type-I quasars providing a very biased trace of this activity. Combined deep X-ray and IR surveys consistently find that the universe has experienced a violent phase of galaxy activity around z~1, probably related with the assembly of massive galaxies, involving both SF and obscured AGN fueling. Roughly 10 to 20% of this activity has involved substantial AGN emission, this fraction likely reflecting the AGN/starburst duty cycle during the activation phase.Comment: 5 pages, to appear in MNRA

    Evidence for a Truncated Accretion Disc in the Low Luminosity Seyfert Galaxy, NGC 7213?

    Full text link
    We present the broad-band 0.6-150 keV Suzaku and Swift BAT spectra of the low luminosity Seyfert galaxy, NGC 7213. The time-averaged continuum emission is well fitted by a single powerlaw of photon index Gamma = 1.75 and from consideration of the Fermi flux limit we constrain the high energy cutoff to be 350 keV < E < 25 MeV. Line emission from both near-neutral iron K_alpha at 6.39 keV and highly ionised iron, from Fe_(xxv) and Fe_(xxvi), is strongly detected in the Suzaku spectrum, further confirming the results of previous observations with Chandra and XMM-Newton. We find the centroid energies for the Fe_(xxv) and Fe_(xxvi) emission to be 6.60 keV and 6.95 keV respectively, with the latter appearing to be resolved in the Suzaku spectrum. We show that the Fe_(xxv) and Fe_(xxvi) emission can result from a highly photo-ionised plasma of column density N_(H) ~ 3 x 10^(23) cm^(-2). A Compton reflection component, e.g., originating from an optically-thick accretion disc or a Compton-thick torus, appears either very weak or absent in this AGN, subtending < 1 sr to the X-ray source, consistent with previous findings. Indeed the absence of either neutral or ionised Compton reflection coupled with the lack of any relativistic Fe K signatures in the spectrum suggests that an inner, optically-thick accretion disc is absent in this source. Instead, the accretion disc could be truncated with the inner regions perhaps replaced by a Compton-thin Radiatively Inefficient Accretion Flow. Thus, the Fe_(xxv) and Fe_(xxvi) emission could both originate in ionised material perhaps at the transition region between the hot, inner flow and the cold, truncated accretion disc on the order of 10^(3) - 10^(4) gravitational radii from the black hole. The origin for the unresolved neutral Fe K_alpha emission is then likely to be further out, perhaps originating in the optical BLR or a Compton-thin pc-scale torus.Comment: 15 pages, 11 figures, accepted for publication by MNRA

    The structure of the X-ray absorber in Mrk 915 revealed by Swift

    Get PDF
    In this paper we present the results obtained with a monitoring programme (23 days long) performed with Swift-XRT on the local Seyfert galaxy Mrk 915. The light-curve analysis shows a significant count rate variation (about a factor of 2-3) on a time-scale of a few days, while the X-ray colours show a change in the spectral curvature below 2 keV and the presence of two main spectral states. From the spectral analysis we find that the observed variations can be explained by the change of the intrinsic nuclear power (about a factor of 1.5) coupled with a change of the properties of an ionized absorber. The quality of the data prevents us from firmly establishing if the spectral variation is due to a change in the ionization state and/or in the covering factor of the absorbing medium. The latter scenario would imply a clumpy structure of the ionized medium. By combining the information provided by the light curve and the spectral analyses, we can derive some constraints on the location of the absorber under the hypotheses of either homogeneous or clumpy medium. In both cases, we find that the absorber should be located inside the outer edge of an extended torus and, in particular, under the clumpy hypothesis, it should be located near, or just outside, to the broad emission line region.Comment: 8 pages, 6 figures, 1 table. Accepted for publication on MNRA

    2-10 keV luminosity of high-mass binaries as a gauge of ongoing star-formation rate

    Get PDF
    Based on recent work on spectral decomposition of the emission of star-forming galaxies, we assess whether the integrated 2-10 keV emission from high-mass X-ray binaries (HMXBs), L_{2-10}^{HMXB}, can be used as a reliable estimator of ongoing star formation rate (SFR). Using a sample of 46 local (z < 0.1) star forming galaxies, and spectral modeling of ASCA, BeppoSAX, and XMM-Newton data, we demonstrate the existence of a linear SFR-L_{2-10}^{HMXB} relation which holds over ~5 decades in X-ray luminosity and SFR. The total 2-10 keV luminosity is not a precise SFR indicator because at low SFR (i.e., in normal and moderately-starbursting galaxies) it is substantially affected by the emission of low-mass X-ray binaries, which do not trace the current SFR due to their long evolution lifetimes, while at very high SFR (i.e., for very luminous FIR-selected galaxies) it is frequently affected by the presence of strongly obscured AGNs. The availability of purely SB-powered galaxies - whose 2-10 keV emission is mainly due to HMXBs - allows us to properly calibrate the SFR-L_{2-10}^{HMXB} relation. The SFR-L_{2-10}^{HMXB} relation holds also for distant (z ~ 1) galaxies in the Hubble Deep Field North sample, for which we lack spectral information, but whose SFR can be estimated from deep radio data. If confirmed by more detailed observations, it may be possible to use the deduced relation to identify distant galaxies that are X-ray overluminous for their (independently estimated) SFR, and are therefore likely to hide strongly absorbed AGNs.Comment: Astronomy & Astrophysics, in press (15 pages, 7 figures, 4 tables

    XMM-Newton and NuSTAR joint observations of Mrk 915: a deep look into the X-ray properties

    Get PDF
    We report on the X-ray monitoring programme (covering slightly more than 11 days) carried out jointly by XMM-Newton and NuSTAR on the intermediate Seyfert galaxy Mrk 915. The light curves extracted in different energy ranges show a variation in intensity but not a significant change in spectral shape. The X-ray spectra reveal the presence of a two-phase warm absorber: a fully covering mildly ionized structure [log xi/(erg cm/s)~2.3, NH~1.3x10^21 cm-2] and a partial covering (~90 per cent) lower ionized one [log xi/(erg cm/s)~0.6, NH~2x10^22 cm-2]. A reflection component from distant matter is also present. Finally, a high-column density (NH~1.5x10^23 cm-2) distribution of neutral matter covering a small fraction of the central region is observed, almost constant, in all observations. Main driver of the variations observed between the datasets is a decrease in the intrinsic emission by a factor of ~1.5. Slight variations in the partial covering ionized absorber are detected, while the data are consistent with no variation of the total covering absorber. The most likely interpretation of the present data locates this complex absorber closer to the central source than the narrow line region, possibly in the broad line region, in the innermost part of the torus, or in between. The neutral obscurer may either be part of this same stratified structure or associated with the walls of the torus, grazed by (and partially intercepting) the line of sight.Comment: 14 pages, 10 figures, 4 tables. Accepted for publication in MNRA

    X-ray Line Emitting Objects in XMM-Newton Observations: the Tip of the Iceberg

    Full text link
    We present preliminary results from a novel search for X-ray Line Emitting Objects (XLEOs) in XMM-Newton images. Three sources have been detected in a test-run analysis of 13 XMM-Newton observations. The three objects found are most likely extremely absorbed AGN characterized by a column density NH~10^24cm^-2. Their redshift has been directly determined from the X-ray data, by interpreting the detected emission line as the 6.4 keV Fe line. The measured equivalent width of the X-ray line is, in all three cases, several keV. This pilot study demonstrates the success of our search method and implies that a large sample of XLEOs can be obtained from the public XMM-Newton data archive.Comment: 10 pages, 3 figures, accepted for publication in ApJ Letter

    Short term X-ray spectral variability of the quasar PDS 456 observed in a low flux state

    Get PDF
    We present an analysis of the 2013 Suzaku campaign on the nearby luminous quasar PDS 456, covering a total duration of ~1 Ms and a net exposure of 455 ks. During these observations, the X-ray flux was suppressed by a factor of >10 in the soft X-ray band when compared to other epochs. We investigated the broadband continuum by constructing a spectral energy distribution, making use of the optical/UV photometry and hard X-ray spectra from the later XMM-Newton/NuSTAR campaign in 2014. The high energy part of this low flux state cannot be accounted for by self-consistent accretion disc and corona models without attenuation by absorbing gas, which partially covers a substantial fraction of the line of sight towards the X-ray source. Two absorption layers are required, of column density log(NH,low/cm2)=22.3±0.1\log (N_{\rm{H,low}}/{\rm cm^{-2}})=22.3\pm0.1 and log(NH,high/cm2)=23.2±0.1\log (N_{\rm{H,high}}/{\rm cm^{-2}})=23.2\pm0.1, with average covering factors of ~80% (with typical 5% variations) and 60% (±\pm10-15%), respectively. In these observations PDS 456 displays significant short term X-ray spectral variability, on timescales of ~100 ks, which can be accounted for by variable covering of the absorbing gas. The partial covering absorber prefers an outflow velocity of vpc=0.250.05+0.01cv_{\rm pc} = 0.25^{+0.01}_{-0.05}c at the >99.9% confidence level over the case where vpc=0v_{\rm pc}=0. This is consistent with the velocity of the highly ionised outflow responsible for the blueshifted iron K absorption profile. We therefore suggest that the partial covering clouds could be the denser, or clumpy part of an inhomogeneous accretion disc wind. Finally we estimate the size-scale of the X-ray source from its variability. The radial extent of the X-ray emitter is found to be of the order ~15-20 RgR_{\rm g}, although the hard X-ray (>2 keV) emission may originate from a more compact or patchy corona of hot electrons, which is ~6-8 RgR_{\rm g} in size.Comment: 38 pages, 13 figures, accepted for publication in MNRA
    corecore