62 research outputs found
An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies
The propensity score is the probability of treatment assignment conditional on observed baseline characteristics. The propensity score allows one to design and analyze an observational (nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial. In particular, the propensity score is a balancing score: conditional on the propensity score, the distribution of observed baseline covariates will be similar between treated and untreated subjects. I describe 4 different propensity score methods: matching on the propensity score, stratification on the propensity score, inverse probability of treatment weighting using the propensity score, and covariate adjustment using the propensity score. I describe balance diagnostics for examining whether the propensity score model has been adequately specified. Furthermore, I discuss differences between regression-based methods and propensity score-based methods for the analysis of observational data. I describe different causal average treatment effects and their relationship with propensity score analyses
Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews
Background: The interest in prognostic reviews is increasing, but to properly review existing evidence an accurate search filer for finding prediction research is needed. The aim of this paper was to validate and update two previously introduced search filters for finding prediction research in Medline: the Ingui filter and the Haynes Broad filter. Methodology/Principal Findings: Based on a hand search of 6 general journals in 2008 we constructed two sets of papers. Set 1 consisted of prediction research papers (n = 71), and set 2 consisted of the remaining papers (n = 1133). Both search filters were validated in two ways, using diagnostic accuracy measures as performance measures. First, we compared studies in set 1 (reference) with studies retrieved by the search strategies as applied in Medline. Second, we compared studies from 4 published systematic reviews (reference) with studies retrieved by the search filter as applied in Medline. Next -using word frequency methods - we constructed an additional search string for finding prediction research. Both search filters were good in identifying clinical prediction models: sensitivity ranged from 0.94 to 1.0 using our hand search as reference, and 0.78 to 0.89 using the systematic reviews as reference. This latter performance measure even increased to around 0.95 (range 0.90 to 0.97) when either search filter was combined with the additional string that we developed. Retrieval rate of explorative prediction research was poor, both using our hand search or our systematic review as reference, and even combined with our additional search string: sensitivity ranged from 0.44 to 0.85. Conclusions/Significance: Explorative prediction research is difficult to find in Medline, using any of the currently available search filters. Yet, application of either the Ingui filter or the Haynes broad filter results in a very low number missed clinical prediction model studie
Prefrontal cortex activation and young driver behaviour: a fNIRS study
Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population
Effect of Passenger Presence on Older Drivers’ Risk of Fatal Crash Involvement
<div><p>
<b>Objective:</b> To determine the association between passenger presence and risk of fatal crash involvement in relation to driver and passenger age and gender, focusing especially on drivers ages 65 and older.</p>
<p>
<b>Methods:</b> Data on US fatal crashes were obtained for 2002–2009. Using the quasi-induced exposure methodology, logistic regression analysis was used to predict the odds of fatal crash involvement as a function of driver age and gender as well as passenger age and gender.</p>
<p>
<b>Results:</b> Overall, risk of fatal crash involvement with passengers was 43 percent lower for drivers ages 65–74 and 38 percent lower for drivers 75 and older. Older drivers’ risk of fatal crash involvement was lower with almost all combinations of passenger age and gender; there was no reduction in risk with passengers ages 75 and older. Effects were stronger at nonintersection locations than at intersection locations.</p>
<p>
<b>Conclusion:</b> Older drivers’ crash risk is lower with almost every combination of passenger age group and gender. It is unclear whether the presence of passengers lowers older driver crash risk or whether safer drivers tend to ride with passengers.</p>
</div
- …