5 research outputs found

    A conserved lipid-binding loop in the kindlin FERM F1 domain is required for kindlin-mediated aIIbB3 integrin coactivation

    Get PDF
    The activation of heterodimeric integrin adhesion receptors from low to high affinity states occurs in response to intracellular signals that act on the short cytoplasmic tails of integrin beta subunits. Binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to the integrin beta-tail provides one key activation signal, but recent data indicate that the kindlin family of FERM domain proteins also play a central role. Kindlins directly bind integrin beta subunit cytoplasmic domains at a site distinct from the talin-binding site, and target to focal adhesions in adherent cells. However, the mechanisms by which kindlins impact integrin activation remain largely unknown. A notable feature of kindlins is their similarity to the integrin-binding and activating talin FERM domain. Drawing on this similarity, here we report the identification of an unstructured insert in the kindlin F1 FERM domain, and provide evidence that a highly conserved polylysine motif in this loop supports binding to negatively charged phospholipid head groups. We further show that the F1 loop and its membrane-binding motif are required for kindlin-1 targeting to focal adhesions, and for the cooperation between kindlin-1 and -2 and the talin head in aIIbB3 integrin activation, but not for kindlin binding to integrin beta tails. These studies highlight the structural and functional similarities between kindlins and the talin head and indicate that as for talin, FERM domain interactions with acidic membrane phospholipids as well beta-integrin tails contribute to the ability of kindlins to activate integrins

    Kindlin binds migfilin tandem LIM domains and regulates migfilin focal adhesion localization and recruitment dynamics

    No full text
    Focal adhesions (FAs), sites of tight adhesion to the extracellular matrix, are composed of clusters of transmembrane integrin adhesion receptors and intracellular proteins that link integrins to the actin cytoskeleton and signaling pathways. Two integrin-binding proteins present in FAs, kindlin-1 and kindlin-2, are important for integrin activation, FA formation, and signaling. Migfilin, originally identified in a yeast two-hybrid screen for kindlin-2-interacting proteins, is a LIM domain-containing adaptor protein found in FAs and implicated in control of cell adhesion, spreading, and migration. By binding filamin, migfilin provides a link between kindlin and the actin cytoskeleton. Here, using a combination of kindlin knockdown, biochemical pulldown assays, fluorescence microscopy, fluorescence resonance energy transfer (FRET), and fluorescence recovery after photobleaching (FRAP), we have established that the C-terminal LIM domains of migfilin dictate its FA localization, shown that these domains mediate an interaction with kindlin in vitro and in cells, and demonstrated that kindlin is important for normal migfilin dynamics in cells. We also show that when the C-terminal LIM domain region is deleted, then the N-terminal filamin-binding region of the protein, which is capable of targeting migfilin to actin-rich stress fibers, is the predominant driver of migfilin localization. Our work details a correlation between migfilin domains that drive kindlin binding and those that drive FA localization as well as a kindlin dependence on migfilin FA recruitment and mobility. We therefore suggest that the kindlin interaction with migfilin LIM domains drives migfilin FA recruitment, localization, and mobility

    Integrin Cytoplasmic Tail Interactions

    No full text
    corecore