534 research outputs found

    Nanogenomics and Nanoproteomics Enabling Personalized, Predictive and Preventive Medicine

    Get PDF
    Since the discovery of the nucleic acid, molecular biology has made tremendous progresses, achieving a lot of results. Despite this, there is still a gap between the classical and traditional medical approach and the molecular world. Inspired by the incredible wealth of data generated by the "omics"-driven techniques and the “high-trouhgput technologies” (HTTs), I have tried to develop a protocol that could reduce the actually extant barrier between the phenomenological medicine and the molecular medicine, facilitating a translational shift from the lab to the patient bedside. I also felt the urgent need to integrate the most important omics sciences, that is to say genomics and proteomics. Nucleic Acid Programmable Protein Arrays (NAPPA) can do this, by utilizing a complex mammalian cell free expression system to produce proteins in situ. In alternative to fluorescent-labeled approaches a new label free method, emerging from the combined utilization of three independent and complementary nanobiotechnological approaches, appears capable to analyze gene and protein function, gene-protein, gene-drug, protein-protein and protein-drug interactions in studies promising for personalized medicine. Quartz Micro Circuit nanogravimetry (QCM), based on frequency and dissipation factor, mass spectrometry (MS) and anodic porous alumina (APA) overcomes indeed the limits of correlated fluorescence detection plagued by the background still present after extensive washes. Work is in progress to further optimize this approach a homogeneous and well defined bacterial cell free expression system able to realize the ambitious objective to quantify the regulatory gene and protein networks in humans. Implications for personalized medicine of the above label free protein array using different test genes and proteins are reported in this PhD thesis

    Economic microbiology: exploring microbes as agents in economic systems

    Get PDF
    Microbial communities exhibit striking parallels with economic markets, resembling intricate ecosystems where microorganisms engage in resource exchange akin to human market transactions. This dynamic network of resource swapping mirrors economic trade in human markets, with microbes specializing in metabolic functions much like businesses specializing in goods and services. Cooperation and competition are central dynamics in microbial communities, with alliances forming for mutual benefit and species vying for dominance, similar to businesses seeking market share. The human microbiome, comprising trillions of microorganisms within and on our bodies, is not only a marker of socioeconomic status but also a critical factor contributing to persistent health inequalities. Social and economic factors shape the composition of the gut microbiota, impacting healthcare access and quality of life. Moreover, these microbes exert indirect influence over human decisions by affecting neurotransmitter production, influencing mood, behavior, and choices related to diet and emotions. Human activities significantly impact microbial communities, from dietary choices and antibiotic use to environmental changes, disrupting these ecosystems. Beyond their natural roles, humans harness microbial communities for various applications, manipulating their interactions and resource exchanges to achieve specific goals in fields like medicine, agriculture, and environmental science. In conclusion, the concept of microbial communities as biological markets offers valuable insights into their intricate functioning and adaptability. It underscores the profound interplay between microbial ecosystems and human health and behavior, with far-reaching implications for multiple disciplines. To paraphrase Alfred Marshall, “the Mecca of the economist lies in economic microbiology.

    I giochi dell'analisi transazionale. Come riconoscerli e liberarsene. [The games of transactional analysis. How to acknowledge them and how to get rid of them.]

    Get PDF
    Sabrina D&rsquo;Amanti is a trained transactional analyst, who initially worked in the field of clinical and school psychology. This book covers the history and the theoretical foundation of Transactional Analysis (TA), focusing above all on the theory of mind or psychological games, and offers practical examples that can greatly help practitioners and analysts - especially health psychologists - in their clinical work...</p

    L'essenza del coaching. [The essence of coaching].

    Get PDF
    Both Alessandro Pannitti and Franco Rossi have a solid and reputed experience of several years in the field of Coaching, and in this book they have provided the readers with their expert, authoritative overview on the different coaching techniques...</p

    L’essenza del coaching. [The essence of coaching].

    Get PDF

    Protein Crystallization by Anodic Porous Alumina (APA) Template: The Example of Hen Egg White Lysozyme (HEWL)

    Get PDF
    In this communication, we report anodic porous alumina (APA) template induced crystallization. The APA nanotemplate was prepared on the glass substrate for the hen egg white lysozyme (HEWL) crystal growth. The changes in the lysozyme crystals morphology, namely in the a/c axis ratio, were observed in the crystal grown by APA nanotemplate, but not in the crystal obtained with classical hanging drop vapor diffusion method, under the same experimental conditions. The comparison of the diffraction data of the two crystals as well as bioinformatics and data mining approaches and molecular dynamics simulations suggest a possible explanation of the nanotemplate crystallization phenomenon and shed light on the APA-induced nanocrystallography

    The old and the new: vaccine hesitancy in the era of the Web 2.0. Challenges and opportunities

    Get PDF
    The phenomenon known as Vaccine hesitancy (a term that includes the concepts of indecision, uncertainty, delay, reluctance) is complex and closely linked to the different contexts, with different determinants: historical period, geographical areas, political situation, as complacency, convenience and confidence towards vaccines. The World Health Organization (WHO) recommends to constantly monitor vaccine hesitancy and any proxy of it. Given the growing importance and pervasiveness of the information and communication technologies (ICTs), the new media could be exploited for a real-time tracking of vaccination-related perception by the lay-people, enabling health-care workers to actively engage themselves and to plan ad hoc communication strategies. The analysis of so-called "sentiments" expressed through the new media (such as Twitter), the real-time tracking of web-related activities enabled by Google Trends, combined with online specific "surveys" on well-defined themes administered to target groups (like health-care workers) may constitute the "Fast data monitoring system", enabling to get a snapshot on the perception of vaccination in that place and at that time. This type of dashboard could be a strategic tool for public services, to organize targeted communication actions aimed at containing Vaccine hesitancy

    Social determinants, ethical issues and future challenge of tuberculosis in a pluralistic society: the example of Israel

    Get PDF
    Tuberculosis is a very serious respiratory infectious disease, caused by the bacillus Mycobacterium tuberculosis, which generates a relevant societal and clinical burden. It has always represented a permanent concern and a public health challenge over the course of human history, because of its severe epidemiological, and economic-financial implications. The present review aims at over-viewing the impact on tuberculosis on the Israeli healthcare system, its temporal trend and evolution, stratified according to ethnicities and minorities, the need of establishing new facilities and implementing screening techniques, public health strategies and diagnostic tests, following massive immigration waves from countries characterized by a high incidence rate of tuberculosis during the fifties-sixties until the nineties, and the policies implemented by the Israeli government in the control, management and treatment of tuberculosis, as well as the role played by Israeli prominent scientists in discovering new druggable targets and finding bioactive compounds and bio-molecules in the fight against tuberculosis. Israel represents a unique, living laboratory in which features of developed and developing countries mix together. This country as a case-study of immigrant, pluralistic society underlines the importance of adopting a culturally-sensitive community intervention approach. The understanding of the subtle interplay between race/ethnic host and pathogen factors, including the role of gene variations and polymorphisms can pave the way for a personalized treatment and management of tuberculosis patients, contributing to the development of new tools for targeted tuberculosis therapeutics, immunodiagnostics and vaccination products

    Determination of Protein-Protein Interaction for Cancer Control via Mass Spectrometry and Nanoconductimetry of NAPPA SNAP Arrays: An Overview

    Get PDF
    Background: Protein-protein interactions play a major role in Cancer Control and their detailed understanding by Label-Free Nanotechnology is essential especially within the framework of a personalized medicine-based approach. Material and Methods: We implemented an array of label-free nanobiotechnologies, including the Quartz Crystal Microbalance with Dissipation factor monitoring (QCM_D). We used it for the conductometric monitoring of an antiblastic (temozolomide) interacting with genes and proteins, such as MLH1, that represents a biomarker of the rate survival of patients suffering from brain tumors, outcome of chemotherapy and resistance to drug itself. We coupled the Nucleic Acid Programmable Protein Arrays (NAPPA) and the cell-free protein array with the quartz crystal microbalance technology. In another proof of principle, we coupled the NAPPA with the SNAP tag E. colicell-free expression system. The goal is to analyze the protein-protein interaction using Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) Bruker Ultraflex and \u201cProtein synthesis Using Recombinant Elements\u201d (PURE) system, thus avoiding the \u201cblack box\u201d nature of the cell extract. The E. coliin vitro transcription/translation system (IVTT) in respect to the reticulocyte lysate (RRL) or human lysate (HL) is totally characterized and represents an advantage for the subsequent mass spectrometry (MS) analysis. An R Script for Mass Spectrometry Data Preprocessing before Data Mining (SpADS) provides the user with peak recognition and amplitude independent subtraction functions. The MS samples are obtained from SNAP-NAPPA spots and printed on gold coated glass slides in higher density, in order to obtain an amount of protein appropriate for MS analysis. Conclusion: We developed a coherent approach that overcome the drawbacks and pitfalls of the traditional laborious and time-consuming labeled and fluorescence-based experimental procedures. This, taken together with the unique properties of proteins obtained with Langmuir-Blodgett (LB)-based crystallography that can enable new strategies for drug design separately reported, defines our approach to cancer control
    • 

    corecore