100 research outputs found

    Tumor-neutrophil crosstalk promotes in vitro and in vivo glioblastoma progression

    Get PDF
    Introduction: The tumor microenvironment (TME) of glioblastoma (GB) is characterized by an increased infiltration of immunosuppressive cells that attenuate the antitumor immune response. The participation of neutrophils in tumor progression is still controversial and a dual role in the TME has been proposed. In this study, we show that neutrophils are reprogrammed by the tumor to ultimately promote GB progression. Methods: Using in vitro and in vivo assays, we demonstrate the existence of bidirectional GB and neutrophil communication, directly promoting an immunosuppressive TME. Results and discussion: Neutrophils have shown to play an important role in tumor malignancy especially in advanced 3D tumor model and Balb/c nude mice experiments, implying a time- and neutrophil concentration-dependent modulation. Studying the tumor energetic metabolism indicated a mitochondria mismatch shaping the TME secretome. The given data suggests a cytokine milieu in patients with GB that favors the recruitment of neutrophils, sustaining an anti inflammatory profile which is associated with poor prognosis. Besides, glioma neutrophil crosstalk has sustained a tumor prolonged activation via NETs formation, indicating the role of NFkB signaling in tumor progression. Moreover, clinical samples have indicated that neutrophil-lymphocyte ratio (NLR), IL-1b, and IL-10 are associated with poor outcomes in patients with GB. Conclusion: These results are relevant for understanding how tumor progression occurs and how immune cells can help in this process

    Ectonucleotidases in Tumor Cells and Tumor-Associated Immune Cells: An Overview

    Get PDF
    Increasing evidence points out that genetic alteration does not guarantee the development of a tumor and indicates that complex interactions of tumor cells with the microenvironment are fundamental to tumorigenesis. Among the pathological alterations that give tumor cells invasive potential, disruption of inflammatory response and the purinergic signaling are emerging as an important component of cancer progression. Nucleotide/nucleoside receptor-mediated cell communication is orchestrated by ectonucleotidases, which efficiently hydrolyze ATP, ADP, and AMP to adenosine. ATP can act as danger signaling whereas adenosine, acts as a negative feedback mechanism to limit inflammation. Many tumors exhibit alterations in ATP-metabolizing enzymes, which may contribute to the pathological events observed in solid cancer. In this paper, the main changes occurring in the expression and activity of ectonucleotidases in tumor cells as well as in tumor-associated immune cells are discussed. Furthermore, we focus on the understanding of the purinergic signaling primarily as exemplified by research done by the group on gliomas

    Achyrocline satureioides (Lam.) DC (Asteraceae) extract-loaded nanoemulsions as a promising topical wound Healing delivery system : in vitro assessments in human keratinocytes (HaCaT) and HET-CAM irritant potential

    Get PDF
    Achyrocline satureioides (Lam.) DC Asteraceae extracts (ASEs) have been investigated for the treatment of various skin disorders. This study reports the effects of ASE-loaded nanoemulsions (NEASE) on the cellular viability, death by necrosis, and migration of immortalized human keratinocytes (HaCaT cell line), as well as the irritant potential through the hen’s egg chorioallantoic membrane test (HET-CAM). NEASE exhibited a polydispersity index above 0.12, with a droplet size of 300 nm, -potential of 40 mV, and content of flavonoids close to 1 mg/mL. No cytotoxicity of the ASE was observed on HaCaT by MTT assay (up to 10 g/mL). A significant increase of HaCaT viability was observed to NEASE (up to 5 g/mL of flavonoids), compared to treatment with the ASE. The necrosis death evaluation demonstrated that only NEASE did not lead to cell death at all the tested concentrations. The scratch assay demonstrated that NEASE was able to increase the cell migration at low flavonoid concentrations. Finally, the HET-CAM test proved the non-irritative potential of NEASE. Overall, the results indicate the potential of the proposed formulations for topical use in wound healing, in view of their promising effects on proliferation and migration in keratinocytes, combined with an indication of the absence of cytotoxicity and non-irritating potential

    Characterization of Ectonucleotidases in Human Medulloblastoma Cell Lines: ecto-5 ' NT/CD73 in Metastasis as Potential Prognostic Factor

    Get PDF
    Medulloblastoma (MB) is the most common malignant brain tumor in children and occurs mainly in the cerebellum. Important intracellular signaling molecules, such those present in the Sonic Hedgehog and Wnt pathways, are involved in its development and can also be employed to determine tumor grade and prognosis. Ectonucleotidases, particularly ecto-5'NT/CD73, are important enzymes in the malignant process of different tumor types regulating extracellular ATP and adenosine levels. Here, we investigated the activity of ectonucleotidases in three malignant human cell lines: Daoy and ONS76, being representative of primary MB, and the D283 cell line, derived from a metastatic MB. All cell lines secreted ATP into the extracellular medium while hydrolyze poorly this nucleotide, which is in agreement with the low expression and activity of pyrophosphate/phosphodiesterase, NTPDases and alkaline phosphatase. The analysis of AMP hydrolysis showed that Daoy and ONS76 completely hydrolyzed AMP, with parallel adenosine production (Daoy) and inosine accumulation (ONS76). On the other hand, D283 cell line did not hydrolyze AMP. Moreover, primary MB tumor cells, Daoy and ONS76 express the ecto-5'NT/CD73 while D283 representative of a metastatic tumor, revealed poor expression of this enzyme, while the ecto-adenosine deaminase showed higher expression in D283 compared to Daoy and ONS76 cells. Nuclear beta-catenin has been suggested as a marker for MB prognosis. Further it can promotes expression of ecto-5'NT/CD73 and suppression of adenosine deaminase. It was observed that Daoy and ONS76 showed greater nuclear beta-catenin immunoreactivity than D283, which presented mainly cytoplasmic immunoreactivity. In summary, the absence of ecto-5'NT/CD73 in the D283 cell line, a metastatic MB phenotype, suggests that high expression levels of this ectonucleotidase could be correlated with a poor prognosis in patients with MB.Brazilian funding agency CNPqBrazilian funding agency: CNPq [Proc. 303016/2009-4]Brazilian funding agency: FIPEHCPA [Proc. 10-01320]Brazilian funding agency: FIPEHCPABrazilian funding agency: FAPESPBrazilian funding agency FAPESPConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Differential macrophage activation alters the expression profile of NTPDase and Ecto-5´-nucleotidase

    Get PDF
    Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-59-nucleotidase/CD73 (ecto-59-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6–8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-59-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-59-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set

    Physico-chemical characterization of asolectin–genistein liposomal system: An approach to analyze its in vitro antioxidant potential and effect in glioma cells viability

    Get PDF
    AbstractIn this study, the interaction between soy isoflavone genistein and asolectin liposomes was investigated by monitoring the effects of isoflavone on lipidic hydration, mobility, location and order. These properties were analyzed by the following techniques: horizontal attenuated total reflection Fourier transform infrared spectroscopy (HATR-FTIR), low-field 1H nuclear magnetic resonance (NMR), high-field 31P NMR, zeta potential, differential scanning calorimetry (DSC) and UV–vis spectroscopy. The antioxidant and antitumoral activities of the genistein liposomal system were also studied. The genistein saturation concentration in ASO liposomes corresponded to 484μM. HATR–FTIR results indicated that genistein influences the dynamics of the lipidic phosphate, choline, carbonyl and acyl chain methylenes groups. At the lipid polar head, HATR–FTIR and 31P NMR results showed that the isoflavone reduces the hydration degree of the phosphate group, as well as its mobility. Genistein ordered the lipid interfacial carbonyl group, as evidenced by the HATR–FTIR bandwidth analysis. This ordering effect was also observed in the lipidic hydrophobic region, by HATR–FTIR, NMR, DSC and turbidity responses. At the saturation concentration, liposome-loaded genistein inhibits the lipid peroxidation induced by hydroxyl radical in 90.9%. ASO liposome-loaded genistein at 100μM decreased C6 glioma cell viability by 57% after 72h of treatment. Results showed an increase of the genistein in vitro activities after its incorporation in liposomes. The data described in this work will contribute to a better understanding of the interaction between genistein and a natural-source membrane and of its influence on isoflavone biological activities. Furthermore, the antitumoral results showed that genistein-based liposomes, which contain natural-sourced lipids, may be promising as a drug delivery system to be used in the glioma therapy
    corecore