98 research outputs found

    Measuring the proton selectivity of graphene membranes

    Get PDF
    By systematically studying the proton selectivity of free-standing graphene membranes in aqueous solutions we demonstrate that protons are transported by passing through defects. We study the current-voltage characteristics of single-layer graphene grown by chemical vapour deposition (CVD) when a concentration gradient of HCl exists across it. Our measurements can unambiguously determine that H+ ions are responsible for the selective part of the ionic current. By comparing the observed reversal potentials with positive and negative controls we demonstrate that the as-grown graphene is only weakly selective for protons. We use atomic layer deposition to block most of the defects in our CVD graphene. Our results show that a reduction in defect size decreases the ionic current but increases proton selectivity.This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.493633

    Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    Get PDF
    The transfer of chemical vapour deposited (CVD) graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to fully remove and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.We acknowledge funding from EPSRC (Grant No. EP/K016636/1, GRAPHTED) and ERC (Grant No. 279342, InsituNANO). ACV acknowledges the Conacyt Cambridge Scholarship and Roberto Rocca Fellowship. JAA-W acknowledges the support of his Research Fellowships from the Royal Commission for the Exhibition of 1851 and Churchill College, Cambridge. RSW acknowledges a Research Fellowship from St. John's College, Cambridge and a Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870) from the European Union's Horizon 2020 research and innovation programme

    Crystal Orientation Dependent Oxidation Modes at the Buried Graphene-Cu Interface.

    Get PDF
    We combine spatially resolved scanning photoelectron spectroscopy with confocal Raman and optical microscopy to reveal how the oxidation of the buried graphene-Cu interface relates to the Cu crystallographic orientation. We analyze over 100 different graphene covered Cu (high and low index) orientations exposed to air for 2 years. Four general oxidation modes are observed that can be mapped as regions onto the polar plot of Cu surface orientations. These modes are (1) complete, (2) irregular, (3) inhibited, and (4) enhanced wrinkle interface oxidation. We present a comprehensive characterization of these modes, consider the underlying mechanisms, compare air and water mediated oxidation, and discuss this in the context of the diverse prior literature in this area. This understanding incorporates effects from across the wide parameter space of 2D material interface engineering, relevant to key challenges in their emerging applications, ranging from scalable transfer to electronic contacts, encapsulation, and corrosion protection

    Amplitude stabilization and active control of a terahertz quantum cascade laser with a graphene loaded split-ring-resonator array

    Get PDF
    We demonstrate the amplitude stabilization of a 2.85 THz quantum cascade laser with a graphene loaded split-ring-resonator array acting as an external amplitude modulator. The transmittance of the modulator can be actively changed by modifying the graphene conductivity via electrostatic back-gating. The modulator operates at room temperature and is capable of actively modulating the quantum cascade laser power level and thus stabilizing the power output via a proportional-integral-derivative feedback control loop. The stability was enhanced by more than 10 times through actively tuning the modulation. Furthermore, this approach can be used to externally control the laser power with a high level of stability.This work is supported by funding from the Engineering and Physical Sciences Research Council (Grant No. EP/P021859/1, HyperTerahertz–High precision terahertz spectroscopy and microscopy)

    Reactive intercalation and oxidation at the buried graphene-germanium interface

    Get PDF
    We explore a number of different electrochemical, wet chemical, and gas phase approaches to study intercalation and oxidation at the buried graphene-Ge interface. While the previous literature focused on the passivation of the Ge surface by chemical vapor deposited graphene, we show that particularly via electrochemical intercalation in a 0.25 N solution of anhydrous sodium acetate in glacial acetic acid, this passivation can be overcome to grow GeO2 under graphene. Angle resolved photoemission spectroscopy, Raman spectroscopy, He ion microscopy, and time-of-flight secondary ion mass spectrometry show that the monolayer graphene remains undamaged and its intrinsic strain is released by the interface oxidation. Graphene acts as a protection layer for the as-grown Ge oxide, and we discuss how these insights can be utilized for new processing approaches.We acknowledge financial support from the EPSRC (EP/K016636/1, EP/P51021X/1) and the Future Photonics Hub - Innovation Partnership Fund (EPSRC EP/L00044X/1). P.B.W. acknowledges EPSRC Cambridge NanoDTC EP/G037221/1. R.S.W. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme through a EU Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870). R.W. acknowledges EPSRC Doctoral Training Award (EP/M506485/1)

    Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays

    Get PDF
    We present a fast room-temperature terahertz detector based on interdigitated bow-tie antennas contacting graphene. Highly efficient photodetection was achieved by using two metals with different work functions as the arms of a bow-tie antenna contacting graphene. Arrays of the bow-ties were fabricated in order to enhance the responsivity and coupling of the incoming light to the detector, realizing an efficient imaging system. The device has been characterized and tested with a terahertz quantum cascade laser emitting in single frequency around 2 THz, yielding a responsivity of ∼34 μA/W and a noise-equivalent power of ∼1.5 × 10−7^{-7} W/Hz1/2^{1/2}.R.D., Y.R., and H.E.B. acknowledge financial support from the Engineering and Physical Sciences Research Council (Grant No. EP/J017671/1, Coherent Terahertz Systems). S.H. acknowledges funding from EPSRC (Grant No. EP/K016636/1, GRAPHTED). H.L. and J.A.Z. acknowledge financial support from the EPSRC (Grant No. EP/L019922/1). J.A.A.-W. acknowledges a Research Fellowship from Churchill College, Cambridge. H.J.J. thanks the Royal Commission for the Exhibition of 1851 for her Research Fellowship.This is the final version of the article. It first appeared from American Chemical Society via https://doi.org/10.1021/acsphotonics.6b0040
    • …
    corecore