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Abstract
The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a
bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically
deposited onto graphene for mechanical support during transfer are challenging to remove
completely and hence leave graphene and subsequent device interfaces contaminated. Here, we
report on the use of atomic layer deposited (ALD) oxide films as protective interface and support
layers during graphene transfer. The method avoids any direct contact of the graphene with
polymers and through the use of thicker ALD layers (�100 nm), polymers can be eliminated
from the transfer-process altogether. The ALD film can be kept as a functional device layer,
facilitating integrated device manufacturing. We demonstrate back-gated field effect devices
based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show
significantly reduced charge trap and residual carrier densities. We critically discuss the
advantages and challenges of processing graphene/ALD bilayer structures.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

Introduction

The development of scalable integrated manufacturing path-
ways for graphene and related 2D materials is crucial to all their
emerging applications and industrial development. Significant
progress has been made in 2D crystal growth [1–3], and mono-
layer graphene crystals beyond the cm-scale [4] and continuous
films over areas just limited by the growth reactor geometry
[5–7] are now routinely achieved by chemical vapour deposi-
tion (CVD). The graphene CVD process utilises a catalytic
substrate to achieve high crystallinity [2, 8–10] and for the
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majority of emerging applications the graphene has to be
released from this parent growth substrate and transferred into
the device stack. To achieve such graphene transfer cleanly and
without damage, in order that the unique properties of graphene
are preserved, has become a critical challenge [11–15]. This
challenge is particularly highlighted by the many proposed
(opto-)electronic graphene devices, starting with simple gated
graphene field effect device structures, for which the graphene
performance is found to be highly sensitive to the presence of
any contaminants [16–19]. Most polymer [20–24] and metal
[25, 26] layers used as temporary mechanical supports during
graphene transfer have been shown to leave residues on gra-
phene after removal, degrading its electronic properties
[12, 27, 28]. Other common contaminants include lithographic
resists, organic solvents, etching products and ambient air [29],
all of which can for instance unintentionally dope the graphene
(generally p-type [17]) and cause hysteresis in field effect
devices [30]. Hence, ideally the graphene should be protected
from any such contamination during transfer and processing as
well as during device operation. A number of approaches have
been proposed in recent literature to address these challenges.
The cleanest graphene device interfaces have been achieved via
van-der-Waals heterostructures, particularly graphene sand-
wiched between h-BN crystals [31–33], using dry transfer
techniques which, however, have limited scalability and rely on
the availability and quality of other 2D materials. The use of
different polymer layers to support graphene transfer and act as
part of optoelectronic devices has also been reported but this is
limited to certain applications [34–36]. Thin (∼1 nm) metal
oxide layers such as Al2O3, TiO2, NiO and Cr2O3 directly
evaporated onto graphene prior to transfer have been used as
protection from direct polymer exposure [37]. Whereas gra-
phene encapsulation with atomic layer deposited (ALD) alu-
mina at the post-transfer stage has enabled reproducible device
behaviour with negligible gate hysteresis and low doping levels
[38–40]. Due to its scalability and atomic layer growth control,
ALD is particularly suited to be used in conjunction with CVD
graphene, and initial progress has been made in exploring the
ALD parameter space to achieve conformal nucleation of ultra-
thin oxides on graphene and to improve rational 2D/non-2D
material integration [41–44].

Here, we explore the concept of using ALD oxide films
for CVD graphene device fabrication in a combined, inte-
grated fashion where the same ALD layer can serve as gra-
phene protection, support, encapsulation and functional
device layer. The method avoids any direct contact of the
graphene with polymers and through the use of thicker ALD
layers (�100 nm), polymers can be eliminated from the
transfer-process altogether. We focus on alumina (Al2O3),
hafnia (HfO2) and titania (TiO2) ALD layers based on their
extensive use in electronic devices as, for instance, high-κ
dielectric [38, 42], tunnel barrier [42, 45] or permeation
barrier [46, 47]. We demonstrate back-gated field effect
devices based on single-layer graphene transferred with a
protective Al2O3 film onto SiO2 that show significantly
reduced charge trap and residual carrier densities. We criti-
cally discuss the advantages and challenges of such integrated

approaches, and in particular how this relates to the proces-
sing of graphene/ALD bilayer structures.

Methods

Graphene is synthesized by CVD in a commercially available
Aixtron BM Pro (4 inch)machine using polycrystalline Cu foils
(Alfa Aesar, 25μm thick, 99.8% purity). Catalysts are annealed
for 30 min at 50mbar in a mixture of H2/Ar at 1065 °C. CH4

diluted to 0.1% in Ar is then introduced to the chamber for
45min promoting growth under a CH4/H2/Ar atmosphere and
finally cooled down to room temperature in Ar [48].

A Cambridge Nanotech Savannah System (S100 G1) was
employed for the deposition of the oxide layers. H2O was
used as oxidant during ALD and the precursors for titania,
alumina and hafnia were tetrakis(dimethylamido)titanium
(TDMAT, purity >99% Sigma Aldrich 669008), trimethyla-
luminum (TMA, purity >98%, Strem Chemicals 93-1360)
and tetrakis (dimethylamido)hafnium (TDMAHf, purity
>99% Sigma Aldrich 455199) respectively. Precursors are
volatised at temperatures of 40 °C for H2O and TMA and
75 °C for TDMAT and TDMAHf. All samples are loaded and
unloaded while the chamber is at deposition temperature
(200 °C for hafnia and alumina and 120 °C for titania). Before
the ALD deposition, the chamber is pumped to reach a base
pressure of ∼6×10−1 mbar and purged with 20 sccm N2 for
10 min. Oxidant and precursors are alternately introduced into
the chamber in a 20 sccm flow of N2 carrier gas, which is the
same flow employed during the purging time. Recipes were
optimised to provide a continuous film. Details of the ALD
growth can be found in the supporting information, available
online at stacks.iop.org/NANO/28/485201/mmedia.

Polymer-supported graphene transfer is performed by
depositing poly methyl methacrylate (PMMA) onto the gra-
phene/metal-catalyst sample. The catalyst is removed by
etching in a 0.5 M FeCl3 aqueous solution. The graphene/
polymer film is rinsed in DI water and then transferred to
SiO2(300 nm)/Si substrate. The polymer support is subse-
quently removed by immersion in acetone followed by rin-
sing in IPA and drying under a N2 flow.

Exposure of graphene/oxide to ozone was carried out in
the Cambridge Nanotech Savannah System (S100 G1). A
series of ozone pulses were performed over one minute each
with a dose of ∼40mbar s and N2 purge of 1 s between pulses.

Optical microscopy and Raman spectroscopy (Renishaw
Raman InVia microscope, 632 nm wavelength with 1 mW
delivered to the sample, 50x objective) are performed after
graphene is transferred to SiO2(300 nm)/Si substrates.

Results

Figure 1(a) schematically outlines our etching-free transfer
process using ALD alumina as support layer. The first step is
the ALD of alumina directly onto CVD graphene-covered Cu
catalyst foil (more details in supporting information) under
continuous-flow mode without a seed layer [41]. As
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confirmed by spectroscopic ellipsometry, a 40 nm ALD oxide
thickness was used here, noting that the oxide thickness can
be adapted to a chosen application, for example to achieve a
certain gate oxide thickness in top-gated transistors. The
sample is then immersed in DI water at ∼50 °C for ∼12 h to
oxidize the Cu foil. The creation of Cu oxide decouples the
graphene from the catalyst [49–51] making it easier to peel
from the Cu foil. A poly(vinyl) alcohol (PVA) solution (2 g in
20 ml DI water) is drop-cast on top of the alumina layer and
heated to 70 °C for 10 min [52] to provide additional
mechanical support for the graphene/alumina film. The
sample is removed from the hot plate and a thermal release
tape (TRT) (Nitto Denko) is placed on top of it. The Cu foil is
then peeled off and the TRT-PVA-alumina-graphene layer
stack is transferred onto a SiO2(300 nm)/Si support for the
fabrication of field effect transistors (FETs). We acknowledge
that the formation of wrinkles, cracks and holes can occur as a
result of this process, as highlighted in figure 1(b). After the
transfer, the substrate is heated to 120 °C to ensure the release
of the TRT. The sample is then immersed in warm DI water
(50 °C) for at least 1 h to dissolve the PVA and finally dried
with N2. We highlight that although Cu foils are used here,
the use of oxides to support graphene transfer is a method

applicable to graphene grown on other CVD metal catalysts
where other treatments can be used to weaken the graphene–
catalyst interaction.

We use optical microscopy and Raman spectroscopy for the
initial characterisation of as-transferred graphene. Figure 1(b)
shows an optical image of the transferred graphene/alumina
bilayer, where the contrast with the SiO2(300 nm)/Si support is
highlighted by a hole and a scratch in the film. Figure 1(c)
compares the Raman spectrum of as-grown CVD graphene
on Cu foil (black line) with graphene transferred onto
SiO2(300 nm)/Si with 40 nm of alumina (red line) using the
process described in figure 1(a). Both samples show the char-
acteristic features of single layer graphene (2D FWHM
<40 cm−1 and I2D/IG>2) whilst the negligible D peak con-
firms high graphitic quality and negligible defects and disorders
introduced by this transfer process. As-grown graphene on Cu
shows a 2D peak fitted with a single Lorentzian with
FWHM=36.9, I2D/IG=3.4 and the G and 2D peak positions
at 1590 cm−1 and 2740 cm−1, respectively. Raman spectra col-
lected on graphene after transfer shows a 2D peak fitted with a
single Lorentzian with FWHM=38.5, I2D/IG=3.1 and the G
and 2D peak positions at 1593 cm−1 and 2723 cm−1,
respectively.

Figure 1. (a) Schematic representation of the transfer process with oxide buffer layer between graphene and polymer. (b) Optical
micrograph of graphene transferred to SiO2(300 nm)/Si using the process shown in (a). (c) Raman spectra of as-grown graphene on Cu foil –
black line– and of graphene transferred to SiO2(300 nm)/Si using the process shown in (a) –red line–.
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One of the most common graphene device architectures,
that serves as a building block for a number of graphene
applications, is the FET. There are a number of key metrics
which may be used to define FET device performance. Whilst
particular effort has been focussed on improving the field-
effect mobility [39, 53, 54], real-world applications have
stringent requirements on stable and consistent operation. As
such, additional factors including gate-induced hysteresis and
unintentional doping are crucial parameters to be minimised
for graphene applications. Back-gated (300 nm SiO2 on
doped-Si) graphene FET devices were fabricated using pho-
tolithography (see Methods and supporting information) to
further characterise the graphene. All electrical measurements
were carried out in ambient conditions at room temperature.
We use three different processing approaches to fabricate
graphene-based FETs (as described further in the supporting
information): (1) transfer with PMMA support layer
[GPMMA], (2) transfer with PMMA followed by the post-
transfer deposition of 40 nm ALD alumina [GEncap] and (3)
depositing 40 nm alumina as protective layer prior to transfer
using the method outlined in figure 1(a) [GAlOx

]. For the latter
approach the alumina was selectively etched in diluted
phosphoric acid to allow contact metallisation whilst leaving
the graphene channel protected, as described in the supporting
information.

By measuring the Dirac point VD, i.e. the gate voltage at
which minimum current is observed, and the change in VD

between the up sweep (negative to positive) and the down
sweep (positive to negative) ΔVD, we can extract the interface
charge trap density Δn=CgΔVD/e, as well as the residual
carrier density (calculated for the up sweep) nres=CgVD/e,
where the gate capacitance Cg=11.6 nFcm−2, and e is the
electronic charge. Figure 2(a) shows the field-effect transport
characteristics of devices fabricated via the three different
graphene processing approaches. The GPMMA FET shows high
p-type doping (nres>2×1012 cm−2) and a large hysteresis
between the up and the down sweeps (Δn>1.6×1012 cm−2)
which is typical for unencapsulated graphene on SiO2 trans-
ferred with PMMA. A significant but incomplete reduction in

hysteresis and doping can be obtained for GEncap, which is
consistent with previous reports after the direct deposition of
ALD alumina on polymer transferred graphene [55]. Further
improvements can be obtained using thicker encapsulating
films as well as optimised seed layers [38]. The long term
encapsulation of graphene transistors has also been demon-
strated using in situ gaseous pretreatments where conformal
growth of oxide passivates charge traps on the graphene sur-
face [39]. However, these methods use graphene after transfer
with PMMA and thus, are prone to the degradation it involves.
Ultimately during the initial exposure to PMMA during transfer
some adsorbates will remain trapped between the graphene and
alumina layer after encapsulation causing a finite level of
doping and hysteresis, as schematically shown in figure 2(b).

The ID−VG behaviour of GAlOx
(figure 2(a)) shows

negligible doping (nres<1×1011 cm−2) and very low hys-
teresis (Δn<1×1011 cm−2) compared to GEncap. Given
that the same ALD growth conditions were used for each
process, the clear improvement between GEncap and GAlOx

can
thus be predominantly attributed to the significant reduction
in the number of processing-induced adsorbents at the inter-
face between graphene and alumina, as schematically shown
in figure 2(b). Table 1 compares the FET device metrics for

Figure 2. (a) Transfer characteristics of back-gated two terminal transistors fabricated with three different processing approaches, as described
in the main text. Source–drain bias was VSD=10 mV. (b) Schematic representation of graphene/metal-oxide/SiO2 interface of various
devices measured in (a).

Table 1. Comparison of the charge trap density Δn, and residual
carrier density nres (determined from the up sweep) extracted from
the plots in figure 2 and compared to values in the literature.

Graphene process
Δn×1010

(cm−2)
nres×1010

(cm−2)

GPMMA 165 254
GEncap 37 102
GAlOx 6 7
30 nm ALD Al2O3 [55] 86 Not given
90 nm ALD Al2O3—Oxidised Al
seed layer [38]

0–17 11.5

90 nm ALD Al2O3—H2O pretreat-
ment [39]

6 14.5
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the three different processes, which for GAlOx
devices are

comparable with some of the lowest hysteresis values for
graphene FETs in the literature [38, 39]. This highlights the
benefits of the proof-of-concept oxide transfer technique
demonstrated here, that avoids any direct contact of the gra-
phene with polymers or etchants.

The use of polymers during the transfer process can be
completely avoided by depositing a thicker layer of ALD
metal oxide. Figure 3(a) shows the steps followed for this
transfer method. 100 nm of either alumina, hafnia or titania
are directly deposited onto graphene on Cu foil under con-
tinuous-flow mode without using a seed layer [41]. The
thickness was determined to give enough support to the
graphene during the transfer process which simultaneously
provides more stability to graphene devices due to its
encapsulation [38]. Cu foil is then etched using a 0.5 M FeCl3
aqueous solution (∼12 h) for a sample size of 1×1 cm2 and
transferred to DI water. Samples are then floated in HCl 37%
for 15 min to remove any residual Fe ions left from the
etchant [56]. A second DI water bath is used to rinse the
samples and they are finally removed from the water onto a
SiO2(300 nm)/Si substrate.

Additional tests were carried out to confirm the robust-
ness of the film transferred with the metal oxides. Three
samples of SLG were transferred each with a 100 nm thick
layer titania, hafnia and alumina, respectively, following the
process outlined in figure 3(a). Samples of graphene trans-
ferred with each of the metal oxides were heated to 200 °C
and exposed to ozone for 1 min (see methods for more
details). Furthermore, different samples of graphene trans-
ferred with the three metal oxides were exposed to oxygen
plasma (1 min, 100W, 150 mbar) at room temperature.
Reference samples of SLG transferred with conventional
processes using PMMA and not protected with a metal oxide
layer were also exposed to ozone and oxygen plasma at the
same time.

Raman spectra taken from the top of the samples after
oxygen plasma and ozone treatments are shown in
figures 3(b) and (c). The annealing of unprotected graphene
under an oxidizing atmosphere such as ozone leads to
degradation as shown for the unprotected reference sample in
figure 3(b) (black line). Similarly, the conditions used for the
oxygen plasma are expected to completely remove unpro-
tected graphene, since a shorter (8 s) and lower power (50W)

Figure 3. (a) Schematic representation of the second oxide transfer process where polymer is completely avoided. Comparison of Raman
spectra of graphene transferred with metal oxide layers and GPMMA as reference after exposing to harsh gas environments: (b) ozone
treatment for 1 min at 200 °C, which is comprised of a series of ozone pulses each with a dose of ∼40 mbar s and N2 purge between pulses of
1 s in the same system used for ALD and (c) oxygen plasma for 1 min at 100 W and 150 mbar.
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oxygen plasma treatment performed at the same pressure on a
sample without any metal oxide layer leads to the complete
absence of a 2D peak in the Raman spectra, as observed in
figure 3(c) (black line). The samples transferred with the
oxide support layers show no significant increase in the
measured D-peak of the Raman spectra after the ozone and
oxygen plasma treatments. This confirms the oxide support
layer effectively protects the SLG from harsh oxidising
environments maintaining the quality of the graphene.

Discussion

While ALD of metal oxides has been widely used for gra-
phene FETs, here we demonstrate a more integrated approach
to device fabrication, where the same ALD layer can serve as
graphene protection, support, encapsulation and functional
device layer. Our data showed that a 40 nm ALD alumina
layer directly deposited on the graphene/catalyst after the
growth enables a significant reduction in the number of pro-
cessing-induced adsorbents during FET fabrication and hence
significantly reduced charge trap and residual carrier den-
sities. Our method aides integrated device manufacturing,
effectively eliminating an additional step. While ALD films
offer graphene protection, selective etching of the oxide is
required to contact the graphene for typical device structures.
The selective etching of oxide films has been well studied and
multiple methods have been reported including wet [57, 58]
(e.g. KOH, HF, piranha) and dry [59–62] (e.g. RIE, ICP,
DRIE) processes. However, we found that etching of the
metal-oxide layer here was not straight forward which may
relate in part to the growth mechanisms of ALD oxides on
graphene [41]. Extensive process calibration was required to
avoid leaving oxide residues or damaging the graphene.
Although we note that complete etching of the graphene
might be beneficial in the contact area to lower contact
resistance by producing edge contacts (side contact instead of
top contact) [63–65].

Our method here relies on the transfer and processing of
graphene/ALD bilayer structures. ALD oxide growth is
conformal and thus, is prone to ‘freeze in’ graphene wrinkles
on the catalyst surface (see atomic force microscopy in sup-
porting information) which can be detrimental to the transport
properties. The transfer process can also introduce strain in
the graphene and damage the oxide and graphene films. The
transfer process involves handling and bending of the oxide/
graphene film which can induce cracks that may lead to
significant reduction of film quality. The thinner the oxide
layer the more flexible it is, and according to literature 40 nm
films of ALD deposited alumina start showing cracks at a
bending radius of 14 mm [66]. To partly address these chal-
lenges, our method can be modified into a two-stage process
where following the initial transfer with a thin ALD layer an
additional layer of oxide is deposited.

We have so far considered the ALD oxide/graphene
interface, however, the substrate interface is equally important
for device performance. We focus here on SiO2 as the most
widely used support, yet it is well known that the measured

graphene mobility is limited by its interaction with this sub-
strate [67, 68]. This can be addressed via alternative support
(such as h-BN) [67], or partly by plasma treatments and
reoxidation of the SiO2 substrate [69]. Furthermore, we have
shown that during oxide ALD, H2O/O2 redox couples and
the presence of silanol groups at the graphene—SiO2 inter-
face can cause doping and hysteretic behaviour [30, 38, 70].
So apart from just avoiding substrate contamination, it is also
important to ensure the integrity of the relevant device
interfaces during the entire process flow.

Herein, we focus on FET model devices, but this inte-
grated approach may be interesting for a wide range of gra-
phene applications where scalability and reliable device
performance are critical challenges. For dye-sensitized solar
cells [71–73], for instance, using ALD titania as the support
layer would provide a clean interface between the graphene
and the titania whilst the titania can also serve as a compact
layer to reduce charge recombination losses [74]. It is con-
ceivable that dopant materials could be incorporated at the
graphene-oxide interface to strongly dope the graphene for
applications requiring low sheet resistance such as organic
light emitting diodes [75]. The oxide support may also be
exploited as a hard mask [76] in devices avoiding the use of
polymers and other organic solvents that can leave undesir-
able carbon residues on the graphene surface.

Conclusions

We have demonstrated the concept of using ALD oxide films
not only for graphene interfacing and post-growth encapsu-
lation but also as a protective and supporting layer for CVD
graphene transfer and integrated FET fabrication. Back-gated
graphene FET devices transferred with ALD alumina show
significantly reduced charge trap and residual carrier den-
sities. Our method avoids any direct contact of the graphene
with polymers and through the use of thicker ALD layers
(�100 nm), polymers can be eliminated from the transfer-
process altogether. The ALD film can be kept as a functional
device layer, facilitating integrated device manufacture. Many
of the challenges for 2D materials are essentially linked to
interfacing with non-2D materials and we think the combi-
nation of CVD and ALD thereby offers many opportunities
that underline the wider relevance of our data here.
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