12 research outputs found

    A compressible multiphase flow model for violent aerated wave impact problems

    Get PDF
    This paper focuses on the numerical modelling of wave impact events under air entrapment and aeration effects. The underlying flow model treats the dispersed water wave as a compressible mixture of air and water with homogeneous material properties. The corresponding mathematical equations are based on a multiphase flow model which builds on the conservation laws of mass, momentum and energy as well as the gas-phase volume fraction advection equation. A high-order finite volume scheme based on monotone upstream-centred schemes for conservation law reconstruction is used to discretize the integral form of the governing equations. The numerical flux across a mesh cell face is estimated by means of the HLLC approximate Riemann solver. A third-order total variation diminishing Runge–Kutta scheme is adopted to obtain a time-accurate solution. The present model provides an effective way to deal with the compressibility of air and water–air mixtures. Several test cases have been calculated using the present approach, including a gravity-induced liquid piston, free drop of a water column in a closed tank, water–air shock tubes, slamming of a flat plate into still pure and aerated water and a plunging wave impact at a vertical wall. The obtained results agree well with experiments, exact solutions and other numerical computations. This demonstrates the potential of the current method to tackle more general wave–air–structure interaction problems

    A geometrically and thermodynamically compatible finite volume scheme for continuum mechanics on unstructured polygonal meshes

    No full text
    We present a novel Finite Volume (FV) scheme on unstructured polygonal meshes that is provably compliant with the Second Law of Thermodynamics and the Geometric Conservation Law (GCL) at the same time. The governing equations are provided by a subset of the class of symmetric and hyperbolic thermodynamically compatible (SHTC) models introduced by Godunov in 1961. Specifically, our numerical method discretizes the equations for the conservation of momentum, total energy, distortion tensor and thermal impulse vector, hence accounting in one single unified mathematical formalism for a wide range of physical phenomena in continuum mechanics, spanning from ideal and viscous fluids to hyperelastic solids. By means of two conservative corrections directly embedded in the definition of the numerical fluxes, the new schemes are proven to satisfy two extra conservation laws, namely an entropy balance law and a geometric equation that links the distortion tensor to the density evolution. As such, the classical mass conservation equation can be discarded. Firstly, the GCL is derived at the continuous level, and subsequently it is satisfied by introducing the new concepts of general potential and generalized Gibbs relation. The new potential is nothing but the determinant of the distortion tensor, and the associated Gibbs relation is derived by introducing a set of dual or thermodynamic variables such that the GCL is retrieved by dot multiplying the original system with the new dual variables. Once compatibility of the GCL is ensured, thermodynamic compatibility is tackled in the same manner, thus achieving the satisfaction of a local cell entropy inequality. The two corrections are orthogonal, meaning that they can coexist simultaneously without interfering with each other. The compatibility of the new FV schemes holds true at the semi-discrete level, and time integration of the governing PDE is carried out relying on Runge-Kutta schemes. A large suite of test cases demonstrates the structure preserving properties of the schemes at the discrete level as well

    Proton stripping induced by 13^{13}C at 50 Mev/nucleon on 12^{12}C, 40^{40}Ca and 58^{58}Ni

    No full text
    The article looks back on the 183 workshops and briefing sessions of the 15 annual UKSG conferences from 1990 to 2004. The content of this particular form of professional training reflects the development of the professional environment, interests and activities of librarians, especially the emergence of the digital library. Nine major subjects of information and debate are identified: human resource management, new software, acquisition of e-serials, legal aspects, emerging standards, usage statistics, library/vendor relationship, document delivery, and publishing. An analysis of attendance and some remarks on specific features of the sessions complete this “historical study”

    Development and Validation of a Partitioned Fluid-Structure Solver for Transonic Panel Flutter with Focus on Boundary Layer Effects

    No full text
    A partitioned fluid-structure coupling code for transonic panel flutter has been developed and validated. The Reynolds-averaged Navier-Stokes equations are solved numerically by means of an implicit finite volume method to account for nonlinear aerodynamics, as there are shock waves and a viscous boundary layer at the panel surface. An implicit finite element formulation of the structural equations as well as a Galerkin solution of the von-Kármán plate equation are employed to solve elastic panel deformations with respect to geometric nonlinearities. A detailed validation process is presented in this paper for high subsonic and low supersonic Mach numbers. This comprises a discussion of available results from literature with the objective to propose a guideline for validation purposes of partitioned panel flutter solvers. Thereupon the code is used for studies on the impact of turbulent boundary layer characteristics on aeroelastic stability boundaries and post-flutter. An evaluation of flutter modes and frequencies in the post-flutter domain as well as a discussion of the corresponding flow phenomena is presented

    A Priori Neural Networks Versus A Posteriori MOOD Loop: A High Accurate 1D FV Scheme Testing Bed

    No full text
    In this work we present an attempt to replace an a posteriori MOOD loop used in a high accurate Finite Volume (FV) scheme by a trained artificial Neural Network (NN). The MOOD loop, by decrementing the reconstruction polynomial degrees, ensures accuracy, essentially non-oscillatory, robustness properties and preserves physical features. Indeed it replaces the classical a priori limiting strategy by an a posteriori troubled cell detection, supplemented with a local time-step re-computation using a lower order FV scheme (ie lower polynomial degree reconstructions). We have trained shallow NNs made of only two so-called hidden layers and few perceptrons which a priori produces an educated guess (classification) of the appropriate polynomial degree to be used in a given cell knowing the physical and numerical states in its vicinity. We present a proof of concept in 1D. The strategy to train and use such NNs is described on several 1D toy models: scalar advection and Burgers' equation, the isentropic Euler and radiative M1 systems. Each toy model brings new difficulties which are enlightened on the obtained numerical solutions. On these toy models, and for the proposed test cases, we observe that an artificial NN can be trained and substituted to the a posteriori MOOD loop in mimicking the numerical admissibility criteria and predicting the appropriate polynomial degree to be employed safely. The physical admissibility criteria is however still dealt with the a posteriori MOOD loop. Constructing a valid training data set is of paramount importance, but once available, the numerical scheme supplemented with NN produces promising results in this 1D setting. Keywords Neural network • Machine learning • Finite Volume scheme • High accuracy • Hyperbolic system • a posteriori MOOD. Mathematics Subject Classification (2010) 65M08 • 65A04 • 65Z05 • 85A2

    La Conduction Dans le Cœur Du Mammifère

    No full text
    corecore