94 research outputs found
Biophysical nanocharacterization of liver sinusoidal endothelial cells through atomic force microscopy
The structural-functional hallmark of the liver sinusoidal endothelium is the presence of fenestrae grouped in sieve plates. Fenestrae are open membrane bound pores supported by a (sub)membranous cytoskeletal lattice. Changes in number and diameter of fenestrae alter bidirectional transport between the sinusoidal blood and the hepatocytes. Their physiological relevance has been shown in different liver disease models. Although the structural organization of fenestrae has been well documented using different electron microscopy approaches, the dynamic nature of those pores remained an enigma until the recent developments in the research field of four dimensional (4-D) AFM. In this contribution we highlight how AFM as a biophysical nanocharacterization tool enhanced our understanding in the dynamic behaviour of liver sinusoidal endothelial fenestrae. Different AFM probing approaches, including spectroscopy, enabled mapping of topography and nanomechanical properties at unprecedented resolution under live cell imaging conditions. This dynamic biophysical characterization approach provided us with novel information on the ‘short’ life-span, formation, disappearance and closure of hepatic fenestrae. These observations are briefly reviewed against the existing literature
Comparative Scanning, Transmission and Atomic Force Microscopy of the Microtubular Cytoskeleton in Fenestrated Liver Endothelial Cells
Endothelial fenestrae control the exchange of fluids, solutes and particles between the sinusoidal lumen and the microvillous surface of the parenchymal cells. Fenestrae have a critical dimension in the order of 150-200 nm, making it necessary to use microscopes with a resolution better than the light microscope. Comparative whole-mount preparations of isolated, purified and cultured rat liver sinusoidal endothelial cells (LEC) were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Examination of detergent-extracted LEC by SEM and TEM shows an integral cytoskeleton: sieve plates are delineated by a sieve plate-associated cytoskeleton ring and fenestrae by a fenestrae-associated cytoskeleton ring. By using microtubule altering agents we could demonstrate: (1) the architectural role of microtubules in arranging fenestrae, (2) the existence of a population of microtubules resistant against low temperature and colchicine, (3) the ability of LEC to shift the microtubule assembly-disassembly steady state under various conditions, (4) and the necessity of an intact microtubular cytoskeleton to support the increase in the number of fenestrae after cytochalasin B. Topographical examinations of AFM images revealed that sieve plates are delineated by elevated borders, probably projections of the underlying tubular cytoskeleton
Liver sinusoidal endothelial cell modulation upon resection and shear stress in vitro
BACKGROUND: Shear stress forces acting on liver sinusoidal endothelial cells following resection have been noted as a possible trigger in the early stages of hepatic regeneration. Thus, the morphology and gene expression of endothelial cells following partial hepatectomy or shear stress in vitro was studied. RESULTS: Following partial hepatectomy blood flow-to-liver mass ratio reached maximal values 24 hrs post resection. Concomitantly, large fenestrae (gaps) were noted. Exposure of liver sinusoidal endothelial cells, in vitro, to physiological laminar shear stress forces was associated with translocation of vascular endothelial cell growth factor receptor-2 (VEGFR-2) and neuropilin-1 from perinuclear and faint cytoplasmic distribution to plasma membrane and cytoskeletal localization. Under these conditions, VEGFR-2 co-stains with VE-cadherin. Unlike VEGFR-2, the nuclear localization of VEGFR-1 was not affected by shear stress. Quantification of the above receptors showed a significant increase in VEGFR-1, VEGFR-2 and neuropilin-1 mRNA following shear stress. CONCLUSION: Our data suggest a possible relation between elevated blood flow associated with partial hepatectomy and the early events occurring thereby
Ionic Liquid-assisted Synthesis of Polyaniline/Gold Nanocomposite and Its Biocatalytic Application
In this report, a novel chemical synthesis of polyaniline/gold nanocomposite is explored using ionic liquid (IL) 1-Butyl-3-methylimidazolium hexafluorophosphate. The direct chemical synthesis of polyaniline/gold nanocomposite was initiated via the spontaneous oxidation of aniline by AuCl4−in IL. A nearly uniform dispersion of polyaniline/Au particles with a diameter of 450 ± 80 nm was produced by this method, which indicates that this method is more suitable for controlling particle dimensions. It was also found that the electrical conductivity of the polyaniline/gold nanocomposite was more than 100 times higher than that of the pure polyaniline nanoparticles. The polyaniline/gold nanocomposite displays superior function in the biocatalytic activation of microperoxidase-11 because of the high surface area of the assembly and the enhanced charge transport properties of the composite material. We also report the possible application of polyaniline/gold nanocomposite as a H2O2biosensor
- …