33 research outputs found

    Hematocrit and the Risk of Recurrent Venous Thrombosis: A Prospective Cohort Study

    Get PDF
    BACKGROUND: Venous thromboembolism (VTE) is a multicausal disease which recurs. Hematocrit is associated with a thrombotic risk. We aimed to investigate if hematocrit is associated with the recurrence risk. METHODS: Patients with a first VTE were followed after anticoagulation. Patients with VTE provoked by a transient risk factor, natural inhibitor deficiency, lupus anticoagulant, homozygous or double heterozygous defects, cancer, or long-term antithrombotic treatment were excluded. The study endpoint was recurrent VTE. RESULTS: 150 (23%) of 653 patients had recurrence. Only high hematocrit was significantly associated with recurrence risk [hazard ratio (HR) for 1% hematocrit increase with the third tertile 1.08; 95% CI 1.01-1.15]. No or only a weak association for hematocrits within the first and second tertile was seen (HR 1.03; 95% CI 0.97-1.09, and 1.07; 95% CI 1.00-1.13). Hematocrit was associated with recurrence risk only among women. After five years, the probability of recurrence was 9.9% (95% CI 3.7%-15.7%), 15.6% (95% CI 9.7%-21.2%) and 25.5% (95% CI 15.1%-34.6%) in women, and was 29.2% (95% CI 21.1%-36.5%), 30.1% (95% CI 24.1%-35.7%) and 30.8% (95% CI 22.0%-38.7%) in men for hematocrits in the first, second and third tertile, respectively. Men had a higher recurrence risk (1.9; 95% CI 1.1-2.7; p = 0.03), which dropped by 23.5% after adjustment for hematocrit. Hematocrit was not a significant mediator of the sex-difference in recurrence risk (p = 0.223). CONCLUSIONS: High hematocrit is associated with the recurrence only in women. The different recurrence risk between men and women is possibly partly explained by hematocrit

    Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations

    Get PDF
    Background: Multi-phenotype analysis of genetically correlated phenotypes can increase the statistical power to detect loci associated with multiple traits, leading to the discovery of novel loci. This is the first study to date to comprehensively analyze the shared genetic effects within different hemostatic traits, and between these and their associated disease outcomes. Objectives: To discover novel genetic associations by combining summary data of correlated hemostatic traits and disease events. Methods: Summary statistics from genome wide-association studies (GWAS) from seven hemostatic traits (factor VII [FVII], factor VIII [FVIII], von Willebrand factor [VWF] factor XI [FXI], fibrinogen, tissue plasminogen activator [tPA], plasminogen activator inhibitor 1 [PAI-1]) and three major cardiovascular (CV) events (venous thromboembolism [VTE], coronary artery disease [CAD], ischemic stroke [IS]), were combined in 27 multi-trait combinations using metaUSAT. Genetic correlations between phenotypes were calculated using Linkage Disequilibrium Score Regression (LDSC). Newly associated loci were investigated for colocalization. We considered a significance threshold of 1.85 × 10−9 obtained after applying Bonferroni correction for the number of multi-trait combinations performed (n = 27). Results: Across the 27 multi-trait analyses, we found 4 novel pleiotropic loci (XXYLT1, KNG1, SUGP1/MAU2, TBL2/MLXIPL) that were not significant in the original individual datasets, were not described in previous GWAS for the individual traits, and that presented a common associated variant between the studied phenotypes. Conclusions: The discovery of four novel loci contributes to the understanding of the relationship between hemostasis and CV events and elucidate common genetic factors between these traits

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Association between the metabolic syndrome, its individual components, and unprovoked venous thromboembolism: Results of a patient-level meta-analysis

    No full text
    17sinoneObjective-The metabolic syndrome (MetS) may contribute to the pathogenesis of venous thromboembolism (VTE), but this association requires additional investigation. Approach and Results-We performed a patient-level meta-analysis of case-control and cohort studies that evaluated the role of MetS and risk of unprovoked VTE. For case-control studies, odds ratios and 95% confidence intervals were calculated using logistic regression analysis to estimate the influence of individual variables on the risk of VTE; ÷2 tests for trend were used to investigate the effect of increasing number of components of MetS on the risk of VTE and to explore the influence of abdominal obesity on this relationship. For cohort studies, hazard ratios and 95% confidence interval were calculated using multivariable Cox regression analysis. Six case-control studies were included (908 cases with unprovoked VTE and 1794 controls): in multivariate analysis, MetS was independently associated with VTE (odds ratio, 1.91; 95% confidence interval, 1.57-2.33), and both MetS and abdominal obesity were better predictors of unprovoked VTE than obesity defined by the body mass index. Two prospective cohort studies were included (26 531 subjects and 289 unprovoked VTE events): age, obesity, and abdominal obesity, but not MetS were associated with VTE. Conclusions-Case-control but not prospective cohort studies support an association between MetS and VTE. Abdominal adiposity is a strong risk factor for VTE.Ageno, W.; Di Minno, M.N.D.; Ay, C.; Jang, M.J.; Hansen, J.-B.; Steffen, L.M.; Vayà, A.; Rattazzi, M.; Pabinger, I.; Oh, D.; Di Minno, G.; Braekkan, S.K.; Cushman, M.; Bonet, E.; Pauletto, P.; Squizzato, A.; Dentali, F.Ageno, Walter; Di Minno, M. N. D.; Ay, C.; Jang, M. J.; Hansen, J. B.; Steffen, L. M.; Vayà, A.; Rattazzi, M.; Pabinger, I.; Oh, D.; Di Minno, G.; Braekkan, S. K.; Cushman, M.; Bonet, E.; Pauletto, P.; Squizzato, Alessandro; Dentali, Francesc
    corecore