109 research outputs found

    Exploring New Molecular Targets in Advanced Ovarian Cancer: The Aryl Hydrocarbon Receptor (AhR) and Antitumor Benzothiazole Ligands as Potential Therapeutic Candidates

    Get PDF
    Antitumor benzothiazoles, including 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203; NSC 703786), non-fluorinated parent compound DF 203 (NSC 674495), and Phortress (NSC 710305), the lysyl amide prodrug of 5F 203, are experimental anticancer agents with activity in ovarian and breast cancer models in vitro and in vivo. These compounds require (and induce their own) metabolism by cytochrome P450 (CYP) enzymes (e.g., CYP1A1) for antitumor action. The aryl hydrocarbon receptor (AhR) is the main transcriptional regulator of CYP1A1, and we have previously demonstrated that DF 203 and 5F 203 are potent AhR ligands and trigger activation of AhR signaling in sensitive breast and ovarian cancer cells, causing nuclear translocation of AhR. We propose that AhR may represent a new molecular target in the treatment of ovarian tumors, and 5F 203 may exemplify a potential novel treatment. Furthermore, putative biomarkers of sensitivity to this agent have been identified

    Cuprate addition to a 6-substituted pentafulvene: preparation of sec-alkyl substituted titanocene dichlorides and their biological activity

    Get PDF
    The copper-catalysed (10 mol-% CuBr·SMe2, CuCN·LiCl or CuI/PPh3) addition of RMgBr to the pentafulvene 1-(cyclopenta-2,4-dien-1-ylidenemethyl)-2-methoxybenzene allows the formation of cyclopentadienyl derivatives with α-CHR(2-MeOPh) sidechains (R = Me, Et, nBu, iBu, allyl, Ph) without H– transfer. The deprotonation of these sec-alkyl-substituted cyclopentadienyls followed by the addition of TiCl4 allows the isolation of TiCl2{η5-C5H4CHR(2-OMePh)} as rac/meso mixtures that show activity against human colon, breast and pancreatic cell lines (GI50 2.3–42.4 ÎŒM)

    Autophagy modulation: a prudent approach in cancer treatment?

    Get PDF
    Autophagy is a tightly controlled process comprising lysosomal degradation and recycling of cellular proteins and organelles. In cancer, its paradoxical dual role of cytoprotection and cytotoxicity is context-dependent and controversial. Autophagy primarily acts as a mechanism of tumour suppression, by maintenance of genomic integrity and prevention of proliferation and inflammation. This, combined with immune-surveillance capabilities and autophagy’s implicated role in cell death, acts to prevent tumour initiation. However, established tumours exploit autophagy to survive cellular stresses in the hostile tumour microenvironment. This can lead to therapy resistance, one of the biggest challenges facing current anti-cancer approaches. Autophagy modulation is an exciting area of clinical development, attempting to harness this fundamental process as an anti-cancer strategy. Autophagy induction could potentially prevent tumour formation and enhance anti-cancer immune responses. In addition, drug-induced autophagy could be used to kill cancer cells, particularly those in which the apoptotic machinery is defective. Conversely, autophagy inhibition may help to sensitise resistant cancer cells to conventional chemotherapies and specifically target autophagy-addicted tumours. Currently, hydroxychloroquine is in phase I and II clinical trials in combination with several standard chemotherapies, whereas direct, deliberate autophagy induction remains to be tested clinically. More comprehensive understanding of the roles of autophagy throughout different stages of carcinogenesis has potential to guide development of novel therapeutic strategies to eradicate cancer cells

    The natural alkaloid Jerantinine B has activity in acute myeloid leukemia cells through a mechanism involving c-Jun

    Get PDF
    © 2020 The Author(s). Background: Acute myeloid leukemia (AML) is a heterogenous hematological malignancy with poor long-term survival. New drugs which improve the outcome of AML patients are urgently required. In this work, the activity and mechanism of action of the cytotoxic indole alkaloid Jerantinine B (JB), was examined in AML cells. Methods: We used a combination of proliferation and apoptosis assays to assess the effect of JB on AML cell lines and patient samples, with BH3 profiling being performed to identify early effects of the drug (4 h). Phosphokinase arrays were adopted to identify potential driver proteins in the cellular response to JB, the results of which were confirmed and extended using western blotting and inhibitor assays and measuring levels of reactive oxygen species. Results: AML cell growth was significantly impaired following JB exposure in a dose-dependent manner; potent colony inhibition of primary patient cells was also observed. An apoptotic mode of death was demonstrated using Annexin V and upregulation of apoptotic biomarkers (active caspase 3 and cleaved PARP). Using BH3 profiling, JB was shown to prime cells to apoptosis at an early time point (4 h) and phospho-kinase arrays demonstrated this to be associated with a strong upregulation and activation of both total and phosphorylated c-Jun (S63). The mechanism of c-Jun activation was probed and significant induction of reactive oxygen species (ROS) was demonstrated which resulted in an increase in the DNA damage response marker γH2AX. This was further verified by the loss of JB-induced C-Jun activation and maintenance of cell viability when using the ROS scavenger N-acetyl-L-cysteine (NAC). Conclusions: This work provides the first evidence of cytotoxicity of JB against AML cells and identifies ROS-induced c-Jun activation as the major mechanism of action

    New treatments in renal cancer: The AhR ligands

    Get PDF
    Kidney cancer rapidly acquires resistance to antiangiogenic agents, such as sunitinib, developing an aggressive migratory phenotype (facilitated by c-Metsignal transduction). The Aryl hydrocarbon receptor (AhR) has recently been postulated as a molecular target for cancer treatment. Currently, there are two antitumor agent AhR ligands, with activity against renal cancer, that have been tested clinically: aminoflavone (AFP 464, NSC710464) and the benzothiazole (5F 203) prodrug Phortress. Our studies investigated the action of AFP 464, the aminoflavone pro-drug currently used in clinical trials, and 5F 203 on renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis and cell migration. Both compounds caused cell cycle arrest and apoptosis but only 5F 203 potently inhibited the migration of TK-10, Caki-1 and SN12C cells as well as the migration signal transduction cascade, involving c-Met signaling, in TK-10 cells. Current investigations are focused on the development of nano-delivery vehicles, apoferritin-encapsulated benzothiazoles 5F 203 and GW610, for the treatment of renal cancer. These compounds have shown improved antitumor effects against TK-10 cells in vitro at lower concentrations compared with a naked agent.Fil: Itkin, Boris. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Juan A. Fernåndez"; ArgentinaFil: Breen, Alastair. University of Nottingham; Estados UnidosFil: Turyanska, Lyudmila. University of Nottingham; Estados UnidosFil: Sandes, Eduardo Omar. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; ArgentinaFil: Bradshaw, Tracey D.. University of Nottingham; Estados UnidosFil: Loaiza Perez, Andrea Irene. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin

    A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs

    Get PDF
    Herein, an injectable formulation composed of a low molecular weight gelator (LMWG) based hydrogel and drug-loaded polymeric nanocapsules (NCs) is described. The NCs, made of hyaluronic acid and polyglutamic acid and loaded with C14-Gemcitabine (GEM C14), showed a size of 40 and 80 nm and a encapsulation efficiency > 90%. These NCs exhibited a capacity to control the release of the encapsulated drug for more than 1 month. GEM C14-loaded NCs showed activity against various cancer cell lines in vitro; cell growth inhibition by 50% (GI50) values of 15 ± 6, 10 ± 9, 13 ± 3 and 410 ± 463 nM were obtained in HCT 116, MIA PaCa-2, Panc-1 and Panc-1 GEM resistant cell lines respectively. Nanocomposite hydrogels were prepared using the LMWG - N4-octanoyl-2’-deoxycytidine and loaded for the first time with polymeric NCs. 2% and 4% w/v nanocapsule concentrations as compared to 8% w/v NC concentrations with 2 % and 3% w/v gelator concentrations gave mechanically stronger gels as determined by oscillatory rheology. Most importantly, the nanocomposite formulation reformed instantly into a gel after injection through a needle. Based on these properties, the nanocomposite gel formulation has potential for the intratumoural delivery of anticancer drugs

    Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells

    Get PDF
    Cysteine proteases play a key role in tumorigenesis causing protein degradation and promoting invasive tumour growth. Cathepsin L is overexpressed in cancer cells and could provide a specific target for delivery of anticancer agents. We encapsulated novel dipeptidyl nitrile based cysteine protease inhibitors (Neq0551, Neq0554 and Neq0568) into biocompatible apoferritin (AFt) protein nanocages to achieve specific delivery to tumours and pH-induced drug release. AFt-encapsulated Neq0554 demonstrated $3-fold enhanced in vitro activity (GI 50 Π79 mM) compared to naked agent against MiaPaCa-2 pancreatic carcinoma cells. Selectivity for cancer cells was confirmed by comparing their activity to non-tumourigenic human fibroblasts (GI 50 > 200 mM). Transferrin receptor (TfR-1) expression, detected only in lysates prepared from carcinoma cells, may contribute to the cancer-selectivity. The G 1 cell cycle arrest caused by AFt-Neq0554 resulting in cytostasis was corroborated by clonogenic assays. Superior and more persistent inhibition of cathepsin L up to 80% was achieved with AFt-encapsulated agent in HCT-116 cells following 6 h exposure to 50 mM agent. The selective anticancer activity of AFt-encapsulated cysteine protease inhibitor Neq0554 reported here warrants further preclinical in vivo evaluation

    In vitro anticancer properties and biological evaluation of novel natural alkaloid jerantinine B

    Get PDF
    Natural products play a pivotal role in medicine especially in the cancer arena. Many drugs that are currently used in cancer chemotherapy originated from or were inspired by nature. Jerantinine B (JB) is one of seven novel Aspidosperma indole alkaloids isolated from the leaf extract of Tabernaemontana corymbosa. Preliminary antiproliferative assays revealed that JB and JB acetate significantly inhibited growth and colony formation, accompanied by time- and dose-dependent apoptosis induction in human cancer cell lines. JB significantly arrested cells at the G2/M cell cycle phase, potently inhibiting tubulin polymerisation. Polo-like kinase 1 (PLK1; an early trigger for the G2/M transition) was also dose-dependently inhibited by JB (IC50 1.5 ”M). Furthermore, JB provoked significant increases in reactive oxygen species (ROS). Annexin V+ cell populations, dose-dependent accumulation of cleaved-PARP and caspase 3/7 activation, and reduced Bcl-2 and Mcl-1 expression confirm apoptosis induction. Preclinical in silico biopharmaceutical assessment of JB calculated rapid absorption and bioavailability >70%. Doses of 8–16 mg/kg JB were predicted to maintain unbound plasma concentrations >GI50 values in mice during efficacy studies. These findings advocate continued development of JB as a potential chemotherapeutic agent

    Codrug Approach for the Potential Treatment of EML4-ALK Positive Lung Cancer

    Get PDF
    We report on the synergistic effect of PI3K inhibition with ALK inhibition for the possible treatment of EML4-ALK positive lung cancer. We have brought together ceritinib (ALK inhibitor) and pictilisib (PI3K inhibitor) into a single bivalent molecule (a codrug) with the aim of designing a molecule for slow release drug delivery that targets EML4-ALK positive lung cancer. We have joined the two drugs through a new, pH-sensitive linker where the resulting codrugs are hydrolytically stable at lower pH (pH 6.4) but rapidly cleaved at higher pH (pH 7.4). Compound (19), which was designed for optimal lung retention, demonstrated clean liberation of the drug payloads in vitro and represents a novel approach to targeted lung delivery
    • 

    corecore