12 research outputs found
Evaluation of emmer wheat genetics resources aimed at dietary food production
Emmer wheat cultivated by organic farmers is used as a component of some bio (organic) food products. Its positive influence on consumer health is caused by grain composition. In the set of 8 emmer wheat accessions, the main grain components, bread making characteristics and contents of health supporting chemical substances such as total dietary fibre content and its components, content of total polyphenols plus catechin and ferulic acid contents, vitamins of the B group and E plus total content of carotenoids were evaluated by standard methods
Neurolysosomal pathology in human prosaposin deficiency suggests essential neurotrophic function of prosaposin
A neuropathologic study of three cases of prosaposin (pSap) deficiency (ages at death 27, 89 and 119Â days), carried out in the standard autopsy tissues, revealed a neurolysosomal pathology different from that in the non-neuronal cells. Non-neuronal storage is represented by massive lysosomal accumulation of glycosphingolipids (glucosyl-, galactosyl-, lactosyl-, globotriaosylceramides, sulphatide, and ceramide). The lysosomes in the central and peripheral neurons were distended by pleomorphic non-lipid aggregates lacking specific staining and autofluorescence. Lipid storage was borderline in case 1, and at a low level in the other cases. Neurolysosomal storage was associated with massive ubiquitination, which was absent in the non-neuronal cells and which did not display any immunohistochemical aggresomal properties. Confocal microscopy and cross-correlation function analyses revealed a positive correlation between the ubiquitin signal and the late endosomal/lysosomal markers. We suppose that the neuropathology most probably reflects excessive influx of non-lipid material (either in bulk or as individual molecules) into the neurolysosomes. The cortical neurons appeared to be uniquely vulnerable to pSap deficiency. Whereas in case 1 they populated the cortex, in cases 2 and 3 they had been replaced by dense populations of both phagocytic microglia and astrocytes. We suggest that this massive neuronal loss reflects a cortical neuronal survival crisis precipitated by the lack of pSap. The results of our study may extend the knowledge of the neurotrophic function of pSap, which should be considered essential for the survival and maintenance of human cortical neurons
Landraces and Obsolete Cultivars of Minor Wheat Species in the Czech Collection of Wheat Genetic Resources
Proportion of landraces in the Czech collection of wheat genetic resources differentiates deeply among wheat species, 4.2 % in bread, 77.6 % in emmer and 80.0 % in einkorn wheat collection. The set of 10 selected emmer wheat landraces has been characterised by high molecular weight glutenin subunits (HMW-GSs), evaluated for 3 years in field trials and described by grain quality parameters. Emmer wheat accessions distinguished considerably in polymorphisms of HMW-GSs. Out of the total number of 10 studied emmer wheat landraces 5 accessions appeared to be homogeneous in the electrophoretic patterns of HMW-GSs and they were formed by a single glutenin line. Much higher crude protein content in comparison with check bread wheat cultivar was detected in all emmer wheat accessions. Proportion of this important component varied between 15.5 and 22.2 %. On the other hand SDS sedimentation, as an important parameter of bread making quality was very low (1.2 - 4.4 ml) and similar situation has been recorded in gluten index. Based on such results the emmer wheat landraces can be considered potentially more suitable for other purposes than for preparation of bread e.g. for different grain mixtures, purée etc
Biosynthesis and degradation of mammalian glycosphingolipids.
Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid-containing glycolipids of the ganglio-series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Their de novo synthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane-active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post-translational modification is the attachment of glycolipids to proteins of the human skin
Signals from the lysosome: a control centre for cellular clearance and energy metabolism.
For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master gene, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy, has revealed how the lysosome adapts to environmental cues, such as starvation, and suggests novel therapeutic strategies for modulating lysosomal function in human disease