139 research outputs found

    Who controls university legal education? The Case of England and Wales

    Get PDF
    The question of who, if anyone, controls university legal education has long been contentious. Contenders for control have historically been either legal academics or legal practitioners or their respective professional bodies. In more recent years other potential contenders have arisen. These new contenders include regulators, whether of practitioners or academics, central university authorities and students either as consumers or more simply qua students. This chapter will look at the historical interaction between those with an interest in university law schools in the United Kingdom. It will analyse changes in that relationship. It will then turn to recent suggested reforms to professional legal education and ask what impact, if any, these might have on undergraduate legal education. Finally, the chapter will look at the two bodies that recently taken an interest in what universities and their law schools do, the Competition and Markets Authority and the Advertising Standards Authority and ask whether their interventions will have any impact on the politics of who controls university legal education in the United Kingdom. The chapter will argue that legal education scholarship has made an important contribution to the debates noted above resulting in a more self-confident and assertive academic body

    The Tower

    Get PDF
    The image of the tower is a potent symbol in many cultures. In the ‘Epilogue’ in Blackstone’s Tower, Twining referred to the Eiffel Tower with respect to his book. This article will instead look at the Tower of Babel, the concept of the ivory tower and the tower in which Montaigne composed his essays. It will ask what lessons universities and their law schools can learn from reflecting on these mythical and real towers

    The 1994–2001 eruptive period at Rabaul, Papua New Guinea: Petrological and geochemical evidence for basalt injections into a shallow dacite magma reservoir, and significant SO 2 flux

    Get PDF
    The eruptions that began at Rabaul Caldera on 19 September 1994 had two focal points, the vents Tavurvur and Vulcan, located 6 km apart on opposing sides of the caldera. Vulcan eruptives define a tight cluster of dacite compositions, whereas Tavurvur eruptives span an array from equivalent dacite compositions to mafic andesites. The eruption of geochemically and mineralogically identical dacites from both vents indicates sourcing from the same magma reservoir. This, together with previously reported H₂O-CO₂ volatile contents of dacite melt inclusions, a caldera-wide seismic low-velocity zone, and a seismically active caldera ring fault structure are consistent with the presence at 3–6 km depth of an extensive, tabular dacitic magma body having volume of about 15–150 km³. The Tavurvur andesites form a linear compositional array and have strongly bimodal phenocryst assemblages that reflect dacite hybridisation with a mafic basalt. The moderately large volume SO₂ flux documented in the Tavurvur volcanic plume (and negligible SO₂ flux in the Vulcan plume) combined with high dissolved S contents of basaltic melt inclusions trapped in olivine of Tavurvur eruptives, indicate that the amount of degassed basaltic magma was ~ 0.1 km³ and suggest that the injection of this magma was confined to the Tavurvur-side (eastern to northeastern sector) of the caldera. Circumstantial evidence suggests that the eruption was triggered and evolved in response to a series of basaltic magma injections that may have commenced in 1971 and continued up until at least the start of the 1994 eruptions. The presence of zoned plagioclase phenocrysts reflecting older basalt-dacite interaction events (i.e. anorthite cores overgrown with thick andesine rims), evaluation of limited available data for the products of previous eruptions in 1878 and 1937–1943, and the episodic occurrence of major intra-caldera seismo-deformational events indicates that the shallow magma system at Rabaul Caldera is subjected to repeated mafic magma injections at intervals of several years to several decades.We thank Shane Nancarrow, formerly of Geoscience Australia, for making many aspects of this project possible and AusAID for providing financial support to HP to undertake research at the Australian National University (ANU) into the 1994 and historical eruptions at Rabaul

    The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment

    Get PDF
    This paper investigates the applicability of the assumed wind fields in International Electrotechnical Commission (IEC) standard 61400 Part 2, the design standard for small wind turbines, for a turbine operating in the built environment, and the effects these wind fields have on the predicted performance of a 5 kW Aerogenesis turbine using detailed aeroelastic models developed in Fatigue Aerodynamics Structures and Turbulence (FAST). Detailed wind measurements were acquired at two built environment sites: from the rooftop of a Bunnings Ltd. warehouse at Port Kennedy (PK) (Perth, Australia) and from the small wind turbine site at the University of Newcastle at Callaghan (Newcastle, Australia). For both sites, IEC 61400-2 underestimates the turbulence intensity for the majority of the measured wind speeds. A detailed aeroelastic model was built in FAST using the assumed wind field from IEC 61400-2 and the measured wind fields from PK and Callaghan as an input to predict key turbine performance parameters. The results of this analysis show a modest increase in the predicted mean power for the higher turbulence regimes of PK and Callaghan as well as higher variation in output power. Predicted mean rotor thrust and blade flapwise loading showed a minor increase due to higher turbulence, with mean predicted torque almost identical but with increased variations due to higher turbulence. Damage equivalent loading for the blade flapwise moment was predicted to be 58% and 11% higher for a turbine operating at Callaghan and PK respectively, when compared with IEC 61400-2 wind field. Time series plots for blade flapwise moments and power spectral density plots in the frequency domain show consistently higher blade flapwise bending moments for the Callaghan site with both the sites showing a once-per-revolution response

    Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spain, E. A., Johnson, S. C., Hutton, B., Whittaker, J. M., Lucieer, V., Watson, S. J., Fox, J. M., Lupton, J., Arculus, R., Bradney, A., & Coffin, M. F. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean. Earth and Space Science, 7(3), (2020): e2019EA000695, doi:10.1029/2019EA000695.Bubble emission mechanisms from submerged large igneous provinces remains enigmatic. The Kerguelen Plateau, a large igneous province in the southern Indian Ocean, has a long sustained history of active volcanism and glacial/interglacial cycles of sedimentation, both of which may cause seafloor bubble production. We present the results of hydroacoustic flare observations around the underexplored volcanically active Heard Island and McDonald Islands on the Central Kerguelen Plateau. Flares were observed with a split‐beam echosounder and characterized using multifrequency decibel differencing. Deep‐tow camera footage, water properties, water column δ3He, subbottom profile, and sediment δ13C and δ34S data were analyzed to consider flare mechanisms. Excess δ3He near McDonald Islands seeps, indicating mantle‐derived input, suggests proximal hydrothermal activity; McDonald Islands flares may thus indicate CO2, methane, and other minor gas bubbles associated with shallow diffuse hydrothermal venting. The Heard Island seep environment, with subbottom acoustic blanking in thick sediment, muted 3He signal, and δ13C and δ34S fractionation factors, suggest that Heard Island seeps may either be methane gas (possibly both shallow biogenic methane and deeper‐sourced thermogenic methane related to geothermal heat from onshore volcanism) or a combination of methane and CO2, such as seen in sediment‐hosted geothermal systems. These data provide the first evidence of submarine gas escape on the Central Kerguelen Plateau and expand our understanding of seafloor processes and carbon cycling in the data‐poor southern Indian Ocean. Extensive sedimentation of the Kerguelen Plateau and additional zones of submarine volcanic activity mean additional seeps or vents may lie outside the small survey area proximal to the islands.We thank the Australian Marine National Facility (MNF) for its support in the form of sea time on RV Investigator , support personnel, scientific equipment, and data management. We also thank the captain, crew, and fellow scientists of RV Investigator voyage IN2016_V01. We also thank specifically the following: T. Martin, F. Cooke, S. L. Sow, N. Bax, J. Ford, and F. Althaus, CSIRO (Commonwealth Scientific and Industrial Research Organisation); Echoview Software Pty. Ltd. (Hobart, Australia); C. Dietz and C. Cook, Central Science Laboratory, University of Tasmania; C. Wilkinson and T. Baumberger, National Oceanic and Atmospheric Administration; R. Carey, University of Tasmania; T. Holmes, Institute for Marine and Antarctic Studies, University of Tasmania; N. Polmear; and A. Post, Geoscience Australia. The overall science of the project is supported by Australian Antarctic Science Program (AASP) grant 4338. E.S.' PhD research is supported by the Australian Research Council's Special Research Initiative Antarctic Gateway Partnership (Project ID SR140300001) and by an Australian Government Research Training Program Scholarship. S.C.J. is supported by iCRAG under SFI, European Regional Development Fund, and industry partners, as well as ANZIC‐IODP. J.M.W. is supported by ARC grant DE140100376 and DP180102280. This is PMEL publication number 4910. All IN2016_V01 data and samples acquired on IN2016_V01 are made publicly available in accordance with MNF policy

    Exploring Quaker organising to consider the possibilities for relational leadership

    Get PDF
    This paper develops the perspective of ‘relational leadership’ by exploring dynamics of influence within Quaker organising. The theory of relational leadership is drawn upon as it is connected with more sustainable and equitable ways of organising. A Quaker context is studied as it is conducive for understanding possibilities for relational leadership because there is no formal hierarchy. By applying three aspects of a relational leadership perspective (mutual influence process [1], momentary [2] and socially co-constructed [3]) to a thematic analysis of interview data, understanding is developed about the potential dynamics of influence and leadership in non-hierarchical organising. Two contributions to relational leadership theory are offered. Firstly, the paper shows a need for greater critical attention to appreciate the potential subtleties and tensions involved in influencing dynamics in non-hierarchical organising; and, secondly, assumptions about the continuous potential for fluidity of influencing are challenged

    Shallow Seafloor Gas emissions Near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean

    Get PDF
    Bubble emission mechanisms from submerged large igneous provinces remains enigmatic. The Kerguelen Plateau, a large igneous province in the southern Indian Ocean, has a long sustained history of active volcanism and glacial/interglacial cycles of sedimentation, both of which may cause seafloor bubble production. We present the results of hydroacoustic flare observations around the underexplored volcanically active Heard Island and McDonald Islands on the Central Kerguelen Plateau. Flares were observed with a split‐beam echosounder and characterized using multifrequency decibel differencing. Deep‐tow camera footage, water properties, water column δ3He, subbottom profile, and sediment δ13C and δ34S data were analyzed to consider flare mechanisms. Excess δ3He near McDonald Islands seeps, indicating mantle‐derived input, suggests proximal hydrothermal activity; McDonald Islands flares may thus indicate CO2, methane, and other minor gas bubbles associated with shallow diffuse hydrothermal venting. The Heard Island seep environment, with subbottom acoustic blanking in thick sediment, muted 3He signal, and δ13C and δ34S fractionation factors, suggest that Heard Island seeps may either be methane gas (possibly both shallow biogenic methane and deeper‐sourced thermogenic methane related to geothermal heat from onshore volcanism) or a combination of methane and CO2, such as seen in sediment‐hosted geothermal systems. These data provide the first evidence of submarine gas escape on the Central Kerguelen Plateau and expand our understanding of seafloor processes and carbon cycling in the data‐poor southern Indian Ocean. Extensive sedimentation of the Kerguelen Plateau and additional zones of submarine volcanic activity mean additional seeps or vents may lie outside the small survey area proximal to the islandsThe overall science of the project is supported by Australian Antarctic Science Program (AASP) grant 4338. E.S.' PhD research is sup- ported by the Australian Research Council's Special Research Initiative Antarctic Gateway Partnership (Project ID SR140300001) and by an Australian Government Research Training Program Scholarship. S.C.J. is sup- ported by iCRAG under SFI, European Regional Development Fund, and industry partners, as well as ANZIC‐ IODP. J.M.W. is supported by ARC grant DE140100376 and DP18010228
    • …
    corecore