66 research outputs found
In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study.
BackgroundCalifornia children's exposures to polybrominated diphenyl ether flame retardants (PBDEs) are among the highest worldwide. PBDEs are known endocrine disruptors and neurotoxicants in animals.ObjectiveHere we investigate the relation of in utero and child PBDE exposure to neurobehavioral development among participants in CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas), a California birth cohort.MethodsWe measured PBDEs in maternal prenatal and child serum samples and examined the association of PBDE concentrations with children's attention, motor functioning, and cognition at 5 (n = 310) and 7 years of age (n = 323).ResultsMaternal prenatal PBDE concentrations were associated with impaired attention as measured by a continuous performance task at 5 years and maternal report at 5 and 7 years of age, with poorer fine motor coordination-particularly in the nondominant-at both age points, and with decrements in Verbal and Full-Scale IQ at 7 years. PBDE concentrations in children 7 years of age were significantly or marginally associated with concurrent teacher reports of attention problems and decrements in Processing Speed, Perceptual Reasoning, Verbal Comprehension, and Full-Scale IQ. These associations were not altered by adjustment for birth weight, gestational age, or maternal thyroid hormone levels.ConclusionsBoth prenatal and childhood PBDE exposures were associated with poorer attention, fine motor coordination, and cognition in the CHAMACOS cohort of school-age children. This study, the largest to date, contributes to growing evidence suggesting that PBDEs have adverse impacts on child neurobehavioral development
Lessons Learned for the Assessment of Children’s Pesticide Exposure: Critical Sampling and Analytical Issues for Future Studies
In this article we examine sampling strategies and analytical methods used in a series of recent studies of children’s exposure to pesticides that may prove useful in the design and implementation of the National Children’s Study. We focus primarily on the experiences of four of the National Institute of Environmental Health Sciences/U.S. Environmental Protection Agency/ Children’s Centers and include University of Washington studies that predated these centers. These studies have measured maternal exposures, perinatal exposures, infant and toddler exposures, and exposure among young children through biologic monitoring, personal sampling, and environmental monitoring. Biologic monitoring appears to be the best available method for assessment of children’s exposure to pesticides, with some limitations. It is likely that a combination of biomarkers, environmental measurements, and questionnaires will be needed after careful consideration of the specific hypotheses posed by investigators and the limitations of each exposure metric. The value of environmental measurements, such as surface and toy wipes and indoor air or house dust samples, deserves further investigation. Emphasis on personal rather than environmental sampling in conjunction with urine or blood sampling is likely to be most effective at classifying exposure. For infants and young children, ease of urine collection (possible for extended periods of time) may make these samples the best available approach to capturing exposure variability of nonpersistent pesticides; additional validation studies are needed. Saliva measurements of pesticides, if feasible, would overcome the limitations of urinary metabolite-based exposure analysis. Global positioning system technology appears promising in the delineation of children’s time–location patterns
PBDE Concentrations in Women’s Serum and Fecundability
BackgroundExposure to polybrominated diphenyl ether (PBDE) flame retardants is widespread, with 97% of Americans having detectable levels. Although PBDEs have been associated with reproductive and hormonal effects in animals, no human studies have examined their association with fertility.ObjectivesThis study was designed to determine whether maternal concentrations of PBDEs in serum collected during pregnancy are associated with time to pregnancy and menstrual cycle characteristics.MethodsPregnant women (n = 223) living in a low-income, predominantly Mexican-immigrant community in California were interviewed to determine how many months they took to become pregnant. Blood samples were collected and analyzed for PBDEs. PBDE concentrations were lipid adjusted and log10 transformed. Analyses were limited to PBDE congeners detected in > 75% of the population (BDEs 47, 99, 100, 153). Cox proportional hazards models modified for discrete time were used to obtain fecundability odds ratios (fORs) for the association of PBDEs and time to pregnancy.ResultsWe detected all four congeners in > 97% of women. Increasing levels of BDEs 47, 99, 100, 153 and the sum of these four congeners were all associated with longer time to pregnancy. We observed significantly reduced fORs for BDE-100 [adjusted fOR = 0.6; 95% confidence interval (CI), 0.4-0.9], BDE-153 (adjusted fOR = 0.5; 95% CI, 0.3-0.8), and the sum of the four congeners (adjusted fOR = 0.7; 95% CI, 0.5-1.0). PBDEs were not associated with menstrual cycle characteristics.ConclusionsWe found significant decreases in fecundability associated with PBDE exposure in women. Future studies are needed to replicate and confirm this finding
Polybrominated Diphenyl Ether Levels in the Blood of Pregnant Women Living in an Agricultural Community in California
BACKGROUND: Recent studies have raised concerns about polybrominated diphenyl ether (PBDE) flame retardant exposures to pregnant women and women of child-bearing age in the United States. Few studies have measured PBDEs in immigrant populations. OBJECTIVES: Our goal was to characterize levels of seven PBDE congeners, polychlorinated biphenyl (PCB)-153, and polybrominated biphenyl (PBB)-153 in plasma from 24 pregnant women of Mexican descent living in an agricultural community in California. RESULTS: The median concentration of the sum of the PBDE congeners was 21 ng/g lipid and ranged from 5.3 to 320 ng/g lipid. Consistent with other studies, 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) was found at the highest concentration (median = 11 ng/g lipid; range, 2.5–205) followed by 2,2′,4,4′,5-pentabromobiphenyl (BDE-99) (median = 2.9 ng/g lipid; range, 0.5–54), 2,2′,4,4′,5-pentaBDE (BDE-100) (median = 1.8 ng/g lipid; range, 0.6–44), and 2,2′,4,4′,5,5′-hexaBDE (BDE-153) (median = 1.5 ng/g lipid; range, 0.4–35). Levels of PCB-153 (median= 4.4 ng/g lipid; range, < 2–75) were lower than U.S. averages and uncorrelated with PBDE levels, suggesting different exposure routes. CONCLUSIONS: The overall levels of PBDEs found were lower than levels observed in other U.S. populations, although still higher than those observed previously in Europe or Japan. The upper range of exposure is similar to what has been reported in other U.S. populations. PBDEs have been associated with adverse developmental effects in animals. Future studies are needed to determine the sources and pathways of PBDE exposures and whether these exposures have adverse effects on human health
Quantification and Analysis of Micro-Level Activities Data from Children Aged 1-12 Years Old for Use in the Assessments of Exposure to Recycled Tire on Turf and Playgrounds.
BACKGROUND: There are growing health concerns about exposure to toxicants released from recycled tire rubber, which is commonly used in synthetic turf and playground mats. To better estimate children\u27s exposure and risk from recycled tire rubber used in synthetic turf and playground mats, there is a need to collect detailed accurate information on mouthing activity and dermal contact behaviors. The objective of this study was to quantify and analyze micro-level activity time series (MLATS) data from children aged 1-12 years old while playing (non-sport-related games) at turf-like locations and playgrounds. Another objective was to estimate the incidental ingestion rate of rubber crumb among children.
METHODS: Hand and mouth contact frequency, hourly duration, and median contact duration with different objects were calculated for children playing on turf (i.e., parks, lawns, and gardens) (n = 56) and for children playing on playground structures (n = 24). Statistically significant differences between males and females as well as children\u27s age groups were evaluated. The daily incidental ingestion rate of rubber crumb was calculated.
RESULTS: For children playing on turf, there were significant differences between younger (1-6 y) and older (7-12 y) children for the mouthing median duration with non-dietary objects and all objects. For children playing on playground structures, we found significant mouthing frequency differences between younger (1-6 y) and older children (7-12 y) with all objects, and for mouthing median duration with non-dietary objects. There were no significant differences between males and females playing on artificial turf-like surfaces or playground mats. Our estimated mean incidental ingestion rate was 0.08, 0.07, and 0.08 g rubber crumb/day for children
DISCUSSION: our results suggest that age and contact duration should be considered in risk assessment models to evaluate mouthing activities when children are playing on artificial turf surfaces or playground mats
Determinants of Organophosphorus Pesticide Urinary Metabolite Levels in Young Children Living in an Agricultural Community
Organophosphorus (OP) pesticides are used in agriculture and several are registered for home use. As young children age they may experience different pesticide exposures due to varying diet, behavior, and other factors. We measured six OP dialkylphosphate (DAP) metabolites (three dimethyl alkylphosphates (DMAP) and three diethyl alkylphosphates (DEAP)) in urine samples collected from ∼400 children living in an agricultural community when they were 6, 12, and 24 months old. We examined bivariate associations between DAP metabolite levels and determinants such as age, diet, season, and parent occupation. To evaluate independent impacts, we then used generalized linear mixed multivariable models including interaction terms with age. The final models indicated that DMAP metabolite levels increased with age. DMAP levels were also positively associated with daily servings of produce at 6- and 24-months. Among the 6-month olds, DMAP metabolite levels were higher when samples were collected during the summer/spring versus the winter/fall months. Among the 12-month olds, DMAP and DEAP metabolites were higher when children lived ≤60 meters from an agricultural field. Among the 24-month-olds, DEAP metabolite levels were higher during the summer/spring months. Our findings suggest that there are multiple determinants of OP pesticide exposures, notably dietary intake and temporal and spatial proximity to agricultural use. The impact of these determinants varied by age and class of DAP metabolite
Recommended from our members
Determinants of pesticide concentrations in silicone wristbands worn by Latina adolescent girls in a California farmworker community: The COSECHA youth participatory action study
Personal exposure to pesticides has not been well characterized, especially among adolescents. We used silicone wristbands to assess pesticide exposure in 14 to 16 year old Latina girls (N = 97) living in the agricultural Salinas Valley, California, USA and enrolled in the COSECHA (CHAMACOS of Salinas Examining Chemicals in Homes and Agriculture) Study, a youth participatory action study in an agricultural region of California. We determined pesticide concentrations (ng/g/day) in silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry to determine the presence or absence of over 1500 chemicals. Predictors of pesticide detections and concentrations were identified using logistic regression, Wilcoxon rank sum tests, and Tobit regression models. The most frequently detected pesticides in wristbands were fipronil sulfide (87%), cypermethrin (56%), dichlorodiphenyldichloroethylene (DDE) (56%), dacthal (53%), and trans-permethrin (52%). Living within 100 m of active agricultural fields, having carpeting in the home, and having an exterminator treat the home in the past six months were associated with higher odds of detecting certain pesticides. Permethrin concentrations were lower for participants who cleaned their homes daily (GM: 1.9 vs. 6.8 ng/g/day, p = 0.01). In multivariable regression models, participants with doormats in the entryway of their home had lower concentrations (p < 0.05) of cypermethrin (87%), permethrin (99%), fipronil sulfide (69%) and DDE (75%). The results suggest that both nearby agricultural pesticide use and individual behaviors are associated with pesticide exposures
Pesticides in house dust from urban and farmworker households in California: an observational measurement study
<p>Abstract</p> <p>Background</p> <p>Studies report that residential use of pesticides in low-income homes is common because of poor housing conditions and pest infestations; however, exposure data on contemporary-use pesticides in low-income households is limited. We conducted a study in low-income homes from urban and agricultural communities to: characterize and compare house dust levels of agricultural and residential-use pesticides; evaluate the correlation of pesticide concentrations in samples collected several days apart; examine whether concentrations of pesticides phased-out for residential uses, but still used in agriculture (i.e., chlorpyrifos and diazinon) have declined in homes in the agricultural community; and estimate resident children's pesticide exposures via inadvertent dust ingestion.</p> <p>Methods</p> <p>In 2006, we collected up to two dust samples 5-8 days apart from each of 13 urban homes in Oakland, California and 15 farmworker homes in Salinas, California, an agricultural community (54 samples total). We measured 22 insecticides including organophosphates (chlorpyrifos, diazinon, diazinon-oxon, malathion, methidathion, methyl parathion, phorate, and tetrachlorvinphos) and pyrethroids (allethrin-two isomers, bifenthrin, cypermethrin-four isomers, deltamethrin, esfenvalerate, imiprothrin, permethrin-two isomers, prallethrin, and sumithrin), one phthalate herbicide (chlorthal-dimethyl), one dicarboximide fungicide (iprodione), and one pesticide synergist (piperonyl butoxide).</p> <p>Results</p> <p>More than half of the households reported applying pesticides indoors. Analytes frequently detected in both locations included chlorpyrifos, diazinon, permethrin, allethrin, cypermethrin, and piperonyl butoxide; no differences in concentrations or loadings were observed between locations for these analytes. Chlorthal-dimethyl was detected solely in farmworker homes, suggesting contamination due to regional agricultural use. Concentrations in samples collected 5-8 days apart in the same home were strongly correlated for the majority of the frequently detected analytes (Spearman ρ = 0.70-1.00, p < 0.01). Additionally, diazinon and chlorpyrifos concentrations in Salinas farmworker homes were 40-80% lower than concentrations reported in samples from Salinas farmworker homes studied between 2000-2002, suggesting a temporal reduction after their residential phase-out. Finally, estimated non-dietary pesticide intake for resident children did not exceed current U.S. Environmental Protection Agency's (U.S. EPA) recommended chronic reference doses (RfDs).</p> <p>Conclusion</p> <p>Low-income children are potentially exposed to a mixture of pesticides as a result of poorer housing quality. Historical or current pesticide use indoors is likely to contribute to ongoing exposures. Agricultural pesticide use may also contribute to additional exposures to some pesticides in rural areas. Although children's non-dietary intake did not exceed U.S. EPA RfDs for select pesticides, this does not ensure that children are free of any health risks as RfDs have their own limitations, and the children may be exposed indoors via other pathways. The frequent pesticide use reported and high detection of several home-use pesticides in house dust suggests that families would benefit from integrated pest management strategies to control pests and minimize current and future exposures.</p
Prenatal Organophosphorus Pesticide Exposure and Child Neurodevelopment at 24 Months: An Analysis of Four Birth Cohorts
BACKGROUND: Organophosphorus pesticides (OPs) are used in agriculture worldwide. Residential use was common in the United States before 2001.
OBJECTIVES: We conducted a pooled analysis of four birth cohorts (children's centers; n = 936) to evaluate associations of prenatal exposure to OPs with child development at 24 months.
METHODS: Using general linear models, we computed site-specific and pooled estimates of the association of total dialkyl (ΣDAP), diethyl (ΣDEP), and dimethylphosphate (ΣDMP) metabolite concentrations in maternal prenatal urine with mental and psychomotor development indices (MDI/PDI) and evaluated heterogeneity by children's center, race/ethnicity, and PON1 genotype.
RESULTS: There was significant heterogeneity in the center-specific estimates of association for ΣDAP and ΣDMP and the MDI (p = 0.09, and p = 0.05, respectively), as well as heterogeneity in the race/ethnicity-specific estimates for ΣDAP (p = 0.06) and ΣDMP (p = 0.02) and the MDI. Strong MDI associations in the CHAMACOS population per 10-fold increase in ΣDAP (β = -4.17; 95% CI: -7.00, -1.33) and ΣDMP (β = -3.64; 95% CI: -5.97, -1.32) were influential, as were associations among Hispanics (β per 10-fold increase in ΣDAP = -2.91; 95% CI: -4.71, -1.12). We generally found stronger negative associations of ΣDAP and ΣDEP with the 24-month MDI for carriers of the 192Q PON1 allele, particularly among blacks and Hispanics.
CONCLUSIONS: Data pooling was complicated by center-related differences in subject characteristics, eligibility, and changes in regulations governing residential use of OPs during the study periods. Pooled summary estimates of prenatal exposure to OPs and neurodevelopment should be interpreted with caution because of significant heterogeneity in associations by center, race/ethnicity, and PON1 genotype. Subgroups with unique exposure profiles or susceptibilities may be at higher risk for adverse neurodevelopment following prenatal exposure.
CITATION: Engel SM, Bradman A, Wolff MS, Rauh VA, Harley KG, Yang JH, Hoepner LA, Barr DB, Yolton K, Vedar MG, Xu Y, Hornung RW, Wetmur JG, Chen J, Holland NT, Perera FP, Whyatt RM, Lanphear BP, Eskenazi B. 2016. Prenatal organophosphorus pesticide exposure and child neurodevelopment at 24 months: an analysis of four birth cohorts. Environ Health Perspect 124:822-830; http://dx.doi.org/10.1289/ehp.1409474
Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week.
Background: Dialkyl phosphate (DAP) metabolites in spot urine samples are frequently used to characterize children’s exposures to organophosphorous (OP) pesticides. However, variable exposure and short biological half-lives of OP pesticides could result in highly variable measurements, leading to exposure misclassification.
Objective: We examined within- and between-child variability in DAP metabolites in urine samples collected during 1 week.
Methods: We collected spot urine samples over 7 consecutive days from 25 children (3–6 years of age). On two of the days, we collected 24-hr voids. We assessed the reproducibility of urinary DAP metabolite concentrations and evaluated the sensitivity and specificity of spot urine samples as predictors of high (top 20%) or elevated (top 40%) weekly average DAP metabolite concentrations.
Results: Within-child variance exceeded between-child variance by a factor of two to eight, depending on metabolite grouping. Although total DAP concentrations in single spot urine samples were moderately to strongly associated with concentrations in same-day 24-hr samples (r ≈ 0.6–0.8, p 1 day apart and in 24-hr samples collected 3 days apart were weakly correlated (r ≈ –0.21 to 0.38). Single spot samples predicted high (top 20%) and elevated (top 40%) full-week average total DAP excretion with only moderate sensitivity (≈ 0.52 and ≈ 0.67, respectively) but relatively high specificity (≈ 0.88 and ≈ 0.78, respectively).
Conclusions: The high variability we observed in children’s DAP metabolite concentrations suggests that single-day urine samples provide only a brief snapshot of exposure. Sensitivity analyses suggest that classification of cumulative OP exposure based on spot samples is prone to type 2 classification errors.This research was supported by grant numbers RD 83171001 and RD 876709 from the U.S. Environmental Protection Agency (EPA), and PO1 ES009605 from the National Institute of Environmental Health Sciences (NIEHS)
- …