18,077 research outputs found

    Stereo optical guidance system for control of industrial robots

    Get PDF
    A device for the generation of basic electrical signals which are supplied to a computerized processing complex for the operation of industrial robots. The system includes a stereo mirror arrangement for the projection of views from opposite sides of a visible indicia formed on a workpiece. The views are projected onto independent halves of the retina of a single camera. The camera retina is of the CCD (charge-coupled-device) type and is therefore capable of providing signals in response to the image projected thereupon. These signals are then processed for control of industrial robots or similar devices

    An Analytical Study for Subsonic Oblique Wing Transport Concept

    Get PDF
    The oblique wing concept has been investigated for subsonic transport application for a cruise Mach number of 0.95. Three different mission applications were considered and the concept analyzed against the selected mission requirements. Configuration studies determined the best area of applicability to be a commercial passenger transport mission. The critical parameter for the oblique wing concept was found to be aspect ratio which was limited to a value of 6.0 due to aeroelastic divergence. Comparison of the concept final configuration was made with fixed winged configurations designed to cruise at Mach 0.85 and 0.95. The crossover Mach number for the oblique wing concept was found to be Mach 0.91 for takeoff gross weight and direct operating cost. Benefits include reduced takeoff distance, installed thrust and mission block fuel and improved community noise characteristics. The variable geometry feature enables the final configuration to increase range by 10% at Mach 0.712 and to increase endurance by as much as 44%

    Exact Dynamics of Multicomponent Bose-Einstein Condensates in Optical Lattices in One, Two and Three Dimensions

    Full text link
    Numerous exact solutions to the nonlinear mean-field equations of motion are constructed for multicomponent Bose-Einstein condensates on one, two, and three dimensional optical lattices. We find both stationary and nonstationary solutions, which are given in closed form. Among these solutions are a vortex-anti-vortex array on the square optical lattice and modes in which two or more components slosh back and forth between neighboring potential wells. We obtain a variety of solutions for multicomponent condensates on the simple cubic lattice, including a solution in which one condensate is at rest and the other flows in a complex three-dimensional array of intersecting vortex lines. A number of physically important solutions are stable for a range of parameter values, as we show by direct numerical integration of the equations of motion.Comment: 22 pages, 9 figure

    Feeds for light horses (1993)

    Get PDF
    Feed is the greatest expense of owning a horse. Feed ingredients needed for horses are the same as for other livestock. They are carbohydrates, fats, protein, minerals, vitamins and water. The first three of these can yield energy. Major sources of energy and protein are grains and roughages, including pasture

    A Statistical Treatment of the Gamma-Ray Burst "No Host Galaxy" Problem: II. Energies of Standard Candle Bursts

    Full text link
    With the discovery that the afterglows after some bursts are coincident with faint galaxies, the search for host galaxies is no longer a test of whether bursts are cosmological, but rather a test of particular cosmological models. The methodology we developed to investigate the original "no host galaxy" problem is equally valid for testing different cosmological models, and is applicable to the galaxies coincident with optical transients. We apply this methodology to a family of models where we vary the total energy of standard candle bursts. We find that total isotropic energies of E<2e52~erg are ruled out while log(E)~53 erg is favored.Comment: To appear in Ap.J., 514, 15 pages + 7 figures, AASTeX 4.0. Revisions are: additional author, updated data, and minor textual change

    Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    Get PDF
    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program

    Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein Condensates

    Full text link
    We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be suppressed by tightening the confinement along the direction of the vortex line, leading to a strong suppression in the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches the condensation transition temperature we find that the vortex decay rate is strongly sensitive to dimensionality and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations of the recent vortex dipole decay experiment of Neely et al. [Phys. Rev. Lett. 104, 160401 (2010)] confirm two-dimensional vortex dynamics, and predict a dipole lifetime consistent with experimental observations and suppression of Kelvon-induced vortex decay in highly oblate condensates.Comment: 8 pages, 8 figure

    Winding up by a quench: vortices in the wake of rapid Bose-Einstein condensation

    Full text link
    A second order phase transition induced by a rapid quench can lock out topological defects with densities far exceeding their equilibrium expectation values. We use quantum kinetic theory to show that this mechanism, originally postulated in the cosmological context, and analysed so far only on the mean field classical level, should allow spontaneous generation of vortex lines in trapped Bose-Einstein condensates of simple topology, or of winding number in toroidal condensates.Comment: 4 pages, 2 figures; misprint correcte

    Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates

    Get PDF
    We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to S=6S=6, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations, and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure

    Three-body recombination of ultracold Bose gases using the truncated Wigner method

    Get PDF
    We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases. We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recombination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and can be simulated using known numerical methods. As an example we investigate the behaviour of a simple homogeneous Bose gas.Comment: Replaced paper same as original; correction to author list on cond-mat mad
    corecore