528 research outputs found
Quantum statistical measurements of an atom laser beam
We describe a scheme, operating in a manner analogous to a reversed Raman
output coupler, for measuring the phase-sensitive quadrature statistics of an
atom laser beam. This scheme allows for the transferral of the atomic field
statistics to an optical field, for which the quantum statistics may then be
measured using the well-developed technology of optical homodyne measurement.Comment: 4 pages, 2 fugure
Abdominal Aortic Aneurysm Genetic Associations: Mostly False? A Systematic Review and Meta-analysis
Objective/BackgroundMany associations between abdominal aortic aneurysm (AAA) and genetic polymorphisms have been reported. It is unclear which are genuine and which may be caused by type 1 errors, biases, and flexible study design. The objectives of the study were to identify associations supported by current evidence and to investigate the effect of study design on reporting associations.MethodsData sources were MEDLINE, Embase, and Web of Science. Reports were dual-reviewed for relevance and inclusion against predefined criteria (studies of genetic polymorphisms and AAA risk). Study characteristics and data were extracted using an agreed tool and reports assessed for quality. Heterogeneity was assessed using I2 and fixed- and random-effects meta-analyses were conducted for variants that were reported at least twice, if any had reported an association. Strength of evidence was assessed using a standard guideline.ResultsSearches identified 467 unique articles, of which 97 were included. Of 97 studies, 63 reported at least one association. Of 92 studies that conducted multiple tests, only 27% corrected their analyses. In total, 263 genes were investigated, and associations were reported in polymorphisms in 87 genes. Associations in CDKN2BAS, SORT1, LRP1, IL6R, MMP3, AGTR1, ACE, and APOA1 were supported by meta-analyses.ConclusionUncorrected multiple testing and flexible study design (particularly testing many inheritance models and subgroups, and failure to check for Hardy–Weinberg equilibrium) contributed to apparently false associations being reported. Heterogeneity, possibly due to the case mix, geographical, temporal, and environmental variation between different studies, was evident. Polymorphisms in nine genes had strong or moderate support on the basis of the literature at this time. Suggestions are made for improving AAA genetics study design and conduct
Breakage characteristics of granulated food products for prediction of attrition during lean-phase pneumatic conveying
Pneumatic conveying is utilised in a variety of industries to convey food products exhibiting diverse handling characteristics. Attrition of particles caused by this conveying process can result in a number of undesirable outcomes such as loss in product quality or issues in subsequent handling processes. The ability to predict the breakage behaviour of particulate materials is desirable in both new system design and resolving issues in existing plants. This work considers two different particulate materials (Salt and Golden Breadcrumbs) across a range of particle sizes, and quantifies their breakage behaviour under varying impact conditions. Narrow size fractions of each material was degraded; material retained on 250 µm and 355 µm sieves for salt, and 500µm, 710µm and 1000 µm sieves for Golden Breadcrumbs. Velocity was found to be the most influential factor with respect to particle attrition. The results from the narrow size fraction tests were superimposed to form a simulated full size distribution breakage behaviour, which was then compared to the experimentally determined behaviour. A good agreement was found, however the proportion of material predicted for size fractions smaller than 355 µm for Golden Breadcrumbs and 180 µm for Salt was under-predicted. Recommendations for increasing accuracy of the prediction method are given
Blocking Serum Amyloid-P Component from Binding to Macrophages and Augmenting Fungal Functional Amyloid Increases Macrophage Phagocytosis of Candida albicans
Candida-macrophage interactions are important immune defense responses associated with disseminated and deep-seated candidiasis in humans. Cells of Candida spp. express functional amyloids on their surfaces during the pathogenesis of disseminated candidiasis. These amyloids become decorated with serum amyloid P-component (SAP) that binds to Candida cells and macrophages and downregulates the cellular and cytokine response to the fungi. In this report, further characterization of the interactions of SAP and fungal functional amyloid are demonstrated. Blocking the binding of SAP to macrophage FcγR1 receptors increases phagocytosis of yeast cells; seeding a pro-amyloid-forming peptide on the yeast cell surface also increases phagocytosis of yeasts by macrophages; and, lastly, miridesap, a small palindromic molecule, prevents binding of SAP to yeasts and removes SAP that is bound to C. albicans thus, potentially increasing phagocytosis of yeasts by macrophages. Some, or all, of these interventions may be useful in boosting the host immune response to disseminated candidiasis. © 2022 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering
In this paper, we report some striking results on the microstructural control of TiC/a-C nanocomposite coatings with pulsed direct current (DC) magnetron sputtering. The interface morphology and microstructure evolution as a function of pulse frequency and duty cycle were scrutinized using atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy techniques. It is shown that, with increasing pulse frequency, the nanocomposite coatings exhibit evolutions in morphology of the growing interface from rough to smooth and in the microstructure from strongly columnar to fully columnar-free. In addition, the smoothly growing interface favors the formation of a tailor-made multilayered nanocomposite structure. The fundamental mechanisms are analyzed with the assistance of plasma diagnostic experiments. Ion mass/energy spectrometry measurements reveal that, depending on the frequency and duty cycle of DC pulses, pulsing of the magnetrons can control the flux and energy distribution of Ar+ ions over a very broad range for concurrent impingement on the growing interface of deposited coatings, in comparison with DC sputtering. The significantly enhanced energy flux density is thought to be responsible for the "adatom transfer" in interface smoothening and thus the restraint of columnar growth. (C) 2007 Acta Materialia, Inc. Published by Elsevier Ltd. All rights reserved.</p
Determination of a particle size distribution criterion for predicting dense phase pneumatic conveying behaviour of granular and powder materials
The purpose of this study was to evaluate the effect of particle size distribution on the modes of flow that particulate materials will support in a pneumatic conveying pipeline. It has long been known that some materials can be conveyed in dense phase flow, i.e. a condition wherein the superficial gas velocity is below the saltation value, whereas some materials will block the pipeline under such conditions. It has also been known for a long time that there are two distinct forms of dense phase flow, generally linked to whether the material is fine (such as cement powder), or coarse (such as pellets), but until now there has been no successful method to assess the conveyability of a material based on size distribution alone. Six materials with different size grades were conveyed in a 25 mm bore pipeline, at a range of pressures up to 3 bar and gas velocities from zero to 12 m/s. The results showed that materials below a certain size would support a fluid-like dense phase mode of flow, whereas to support a low-velocity slug flow the key was to have a very narrow size distribution. Materials that satisfied neither of these criteria would not support flow at gas velocities below the saltation value. Clear trends for how throughput changes in the transition from lean to dense phase, are also demonstrated, which have major implications for pipeline sizing. A quantitative criterion for deciding on the likely conveyability of a material, based on size distribution alone, is proposed
Exciting, Cooling And Vortex Trapping In A Bose-Condensed Gas
A straight forward numerical technique, based on the Gross-Pitaevskii
equation, is used to generate a self-consistent description of
thermally-excited states of a dilute boson gas. The process of evaporative
cooling is then modelled by following the time evolution of the system using
the same equation. It is shown that the subsequent rethermalisation of the
thermally-excited state produces a cooler coherent condensate. Other results
presented show that trapping vortex states with the ground state may be
possible in a two-dimensional experimental environment.Comment: 9 pages, 7 figures. It's worth the wait! To be published in Physical
Review A, 1st February 199
Investigation of quasi-periodic variations in hard X-rays of solar flares. II. Further investigation of oscillating magnetic traps
In our recent paper (Solar Physics 261, 233) we investigated quasi-periodic
oscillations of hard X-rays during impulsive phase of solar flares. We have
come to conclusion that they are caused by magnetosonic oscillations of
magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the
present paper we investigate four flares which show clear quasi-periodic
sequences of HXR pulses. We also describe our phenomenological model of
oscillating magnetic traps to show that it can explain observed properties of
HXR oscillations. Main results are the following: 1. We have found that
low-amplitude quasi-periodic oscillations occur before impulsive phase of some
flares. 2. We have found that quasi-period of the oscillations can change in
some flares. We interpret this as being due to changes of the length of
oscillating magnetic traps. 3. During impulsive phase a significant part of the
energy of accelerated (non-thermal) electrons is deposited within the HXR
loop-top source. 4. Our analysis suggests that quick development of impulsive
phase is due to feedback between pulses of the pressure of accelerated
electrons and the amplitude of magnetic-trap oscillation. 5. We have also
determined electron number density and magnetic filed strength for HXR loop-top
sources of several flares. The values fall within the limits of cm, gauss.Comment: 18 pages, 14 figures, submitted to Solar Physic
Thermodynamics of an interacting trapped Bose-Einstein gas in the classical field approximation
We present a convenient technique describing the condensate in dynamical
equilibrium with the thermal cloud, at temperatures close to the critical one.
We show that the whole isolated system may be viewed as a single classical
field undergoing nonlinear dynamics leading to a steady state. In our procedure
it is the observation process and the finite detection time that allow for
splitting the system into the condensate and the thermal cloud.Comment: 4 pages, 4 eps figures, final versio
- …