503 research outputs found

    Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates

    Get PDF
    We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to S=6S=6, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations, and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure

    Using trait-based filtering as a predictive framework for conservation: A case study of bats on farms in southeastern Australia

    Get PDF
    1.With world-wide changes in human land use, an important challenge for conservation biologists is to develop frameworks to predict how species will respond to landscape change. Environmental filtering, where different environments favour different species' traits, has the potential to be a useful predictive framework. Therefore, it is important to advance our understanding of how species with different traits respond to environmental variables. 2.We investigated the distribution of microbats in a 1000000ha agricultural region in southeastern Australia, with specific emphasis on the effects of tree density on bat species characterized by different sizes, wing shapes and echolocation frequencies. The study area is substantially cleared, and trees are continuing to decline because grazing inhibits tree regeneration. We monitored bat activity acoustically at 80 sites spanning a wide range of tree densities. We used regression modelling to quantify the response of bats to tree density and other ecological covariates, and RLQ analysis to assess how different traits correlated with various environmental gradients. 3.Total bat activity and species richness peaked at intermediate tree densities. Species composition was explained by tree density and the traits of individual species. Sites with low tree cover were dominated by large, fast-flying species, whereas sites with dense tree cover were dominated by smaller, highly manoeuvrable species. These findings are consistent with recent findings from other locations around the world. 4.Synthesis and applications. Trait-based predictive frameworks enable landscape managers to assess how different management strategies and landscape modifications are likely to affect different species. Here, we propose a framework to derive general predictions of how bats respond to landscape modification, based on tree density and species traits. We apply this framework to a current conservation issue of tree decline in our study area and derive management priorities including: (i) maintaining a range of tree densities throughout the region; (ii) ensuring the persistence of locations with intermediate tree densities; and (iii) using environmentally sensitive grazing practices, for example, by incorporating long rest periods. Trait-based predictive frameworks enable landscape managers to assess how different management strategies and landscape modifications are likely to affect different species. Here, we propose a framework to derive general predictions of how bats respond to landscape modification, based on tree density and species traits. We apply this framework to a current conservation issue of tree decline in our study area and derive management priorities including: (i) maintaining a range of tree densities throughout the region; (ii) ensuring the persistence of locations with intermediate tree densities; and (iii) using environmentally sensitive grazing practices, for example, by incorporating long rest periods

    Designing Effective Habitat Studies: Quantifying Multiple Sources of Variability in Bat Activity

    No full text
    Common aims of habitat studies are to differentiate between (i) suitable and unsuitable sites for a given species, and (ii) sites used by different communities of species. To quantify differences between sites, field data of site use must be precise enough that true underlying between-site variability is not masked by within-site measurement error. We designed a pilot study to guide the development of a survey protocol for a habitat study on bats in an agricultural landscape in southeastern Australia. Three woodland sites and two scattered tree sites of 2 ha each were surveyed for nine consecutive nights. At three locations within each site (spaced > 50 m apart) one or two Anabat detectors were mounted 1 m above ground or in a tree (2 m above ground). We used mixed regression models to quantify multiple sources of variability in bat calling activity, and graphical data analysis to visualise how increases in survey effort were likely to affect inference. For the five most active species, we found that typically over 40% of variability in nightly detections occurred at the between-site level; approximately 10% occurred between locations within sites; approximately 20% was explained by night-to-night differences; and approximately 30% of variability was not attributable to systematic variation within experimental units. Differences in community composition between sites were clearly evident when two or more detectors per site were used for four or more nights. We conclude with six general considerations for the design of effective habitat studies. These are to (i) consider key contrasts of interest; (ii) use data from mild, calm, dry nights only; (iii) calibrate detectors; (iv) use multiple detectors where possible, or move a single detector within a site; (v) survey for multiple nights; and (vi) where vertical differentiation in habitat use is likely, mount detectors at different heights. These considerations need to be balanced within the context of financial and logistical constraints

    The dynamics of quantum phases in a spinor condensate

    Full text link
    We discuss the quantum phases and their diffusion dynamics in a spinor-1 atomic Bose-Einstein condensate. For ferromagnetic interactions, we obtain the exact ground state distribution of the phases associated with the total atom number (NN), the total magnetization (M{\cal M}), and the alignment (or hypercharge) (YY) of the system. The mean field ground state is stable against fluctuations of atom numbers in each of the spin components, and the phases associated with the order parameter for each spin components diffuse while dynamically recover the two broken continuous symmetries [U(1) and SO(2)] when NN and M{\cal M} are conserved as in current experiments. We discuss the implications to the quantum dynamics due to an external (homogeneous) magnetic field. We also comment on the case of a spinor-1 condensate with anti-ferromagnetic interactions.Comment: 5 figures, an extended version of cond-mat/030117

    Characteristics of Two-Dimensional Quantum Turbulence in a Compressible Superfluid

    Get PDF
    Under suitable forcing a fluid exhibits turbulence, with characteristics strongly affected by the fluid's confining geometry. Here we study two-dimensional quantum turbulence in a highly oblate Bose-Einstein condensate in an annular trap. As a compressible quantum fluid, this system affords a rich phenomenology, allowing coupling between vortex and acoustic energy. Small-scale stirring generates an experimentally observed disordered vortex distribution that evolves into large-scale flow in the form of a persistent current. Numerical simulation of the experiment reveals additional characteristics of two-dimensional quantum turbulence: spontaneous clustering of same-circulation vortices, and an incompressible energy spectrum with k−5/3k^{-5/3} dependence for low wavenumbers kk and k−3k^{-3} dependence for high kk.Comment: 7 pages, 7 figures. Reference [29] updated for v

    The Factory and The Beehive I. Rotation Periods For Low-Mass Stars in Praesepe

    Get PDF
    Stellar rotation periods measured from single-age populations are critical for investigating how stellar angular momentum content evolves over time, how that evolution depends on mass, and how rotation influences the stellar dynamo and the magnetically heated chromosphere and corona. We report rotation periods for 40 late-K to mid-M stars members of the nearby, rich, intermediate-age (~600 Myr) open cluster Praesepe. These rotation periods were derived from ~200 observations taken by the Palomar Transient Factory of four cluster fields from 2010 February to May. Our measurements indicate that Praesepe's mass-period relation transitions from a well-defined singular relation to a more scattered distribution of both fast and slow rotators at ~0.6 Msun. The location of this transition is broadly consistent with expectations based on observations of younger clusters and the assumption that stellar-spin down is the dominant mechanism influencing angular momentum evolution at 600 Myr. However, a comparison to data recently published for the Hyades, assumed to be coeval to Praesepe, indicates that the divergence from a singular mass-period relation occurs at different characteristic masses, strengthening the finding that Praesepe is the younger of the two clusters. We also use previously published relations describing the evolution of rotation periods as a function of color and mass to evolve the sample of Praesepe periods in time. Comparing the resulting predictions to periods measured in M35 and NGC 2516 (~150 Myr) and for kinematically selected young and old field star populations suggests that stellar spin-down may progress more slowly than described by these relations.Comment: To appear in the ApJ. 18 pages, 12 figures; version with higher resolution figures available at http://www.astro.columbia.edu/~marcel/papers/praesepe.pdf. Paper title inspired by local news; see http://tinyurl.com/redhone

    SN2010jp (PTF10aaxi): A Jet-Driven Type II Supernova

    Get PDF
    We present photometry and spectroscopy of the peculiar TypeII supernova (SN) 2010jp, also named PTF10aaxi. The light curve exhibits a linear decline with a relatively low peak absolute magnitude of only -15.9, and a low radioactive decay luminosity at late times that suggests a nickel mass below 0.003 M⊙M_{\odot}. Spectra of SN2010jp display an unprecedented triple-peaked Hα\alpha line profile, showing: (1) a narrow (800 km/s) central component that suggests shock interaction with dense CSM; (2) high-velocity blue and red emission features centered at -12600 and +15400 km/s; and (3) broad wings extending from -22000 to +25000 km/s. These features persist during 100 days after explosion. We propose that this line profile indicates a bipolar jet-driven explosion, with the central component produced by normal SN ejecta and CSM interaction at mid latitudes, while the high-velocity bumps and broad line wings arise in a nonrelativistic bipolar jet. Two variations of the jet interpretation seem plausible: (1) A fast jet mixes 56Ni to high velocities in polar zones of the H-rich envelope, or (2) the reverse shock in the jet produces blue and red bumps in Balmer lines when a jet interacts with dense CSM. Jet-driven SNeII are predicted for collapsars resulting from a wide range of initial masses above 25 M⊙M_{\odot} at sub-solar metallicity. This seems consistent with the SN host environment, which is either an extremely low-luminosity dwarf galaxy or very remote parts of an interacting pair of star-forming galaxies. It also seems consistent with the low 56Ni mass that may accompany black hole formation. We speculate that the jet survives to produce observable signatures because the star's H envelope was mostly stripped away by previous eruptive mass loss.Comment: 11 pages, 9 figures, submitted to MNRA

    Observation of metastable states in spinor Bose-Einstein condensates

    Full text link
    Bose-Einstein condensates have been prepared in long-lived metastable excited states. Two complementary types of metastable states were observed. The first is due to the immiscibility of multiple components in the condensate, and the second to local suppression of spin-relaxation collisions. Relaxation via re-condensation of non-condensed atoms, spin relaxation, and quantum tunneling was observed. These experiments were done with F=1 spinor Bose-Einstein condensates of sodium confined in an optical dipole trap.Comment: 3 figures included in paper, fourth figure separat
    • …
    corecore