126 research outputs found

    Cell Cycle Inhibition without Disruption of Neurogenesis Is a Strategy for Treatment of Aberrant Cell Cycle Diseases: An Update

    Get PDF
    Since publishing our earlier report describing a strategy for the treatment of central nervous system (CNS) diseases by inhibiting the cell cycle and without disrupting neurogenesis (Liu et al. 2010), we now update and extend this strategy to applications in the treatment of cancers as well. Here, we put forth the concept of “aberrant cell cycle diseases” to include both cancer and CNS diseases, the two unrelated disease types on the surface, by focusing on a common mechanism in each aberrant cell cycle reentry. In this paper, we also summarize the pharmacological approaches that interfere with classical cell cycle molecules and mitogenic pathways to block the cell cycle of tumor cells (in treatment of cancer) as well as to block the cell cycle of neurons (in treatment of CNS diseases). Since cell cycle inhibition can also block proliferation of neural progenitor cells (NPCs) and thus impair brain neurogenesis leading to cognitive deficits, we propose that future strategies aimed at cell cycle inhibition in treatment of aberrant cell cycle diseases (i.e., cancers or CNS diseases) should be designed with consideration of the important side effects on normal neurogenesis and cognition

    Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders.

    Get PDF
    BackgroundAutism spectrum disorders (ASDs) likely involve dysregulation of multiple genes related to brain function and development. Abnormalities in individual regulatory small non-coding RNA (sncRNA), including microRNA (miRNA), could have profound effects upon multiple functional pathways. We assessed whether a brain region associated with core social impairments in ASD, the superior temporal sulcus (STS), would evidence greater transcriptional dysregulation of sncRNA than adjacent, yet functionally distinct, primary auditory cortex (PAC).MethodsWe measured sncRNA expression levels in 34 samples of postmortem brain from STS and PAC to find differentially expressed sncRNA in ASD compared with control cases. For differentially expressed miRNA, we further analyzed their predicted mRNA targets and carried out functional over-representation analysis of KEGG pathways to examine their functional significance and to compare our findings to reported alterations in ASD gene expression.ResultsTwo mature miRNAs (miR-4753-5p and miR-1) were differentially expressed in ASD relative to control in STS and four (miR-664-3p, miR-4709-3p, miR-4742-3p, and miR-297) in PAC. In both regions, miRNA were functionally related to various nervous system, cell cycle, and canonical signaling pathways, including PI3K-Akt signaling, previously implicated in ASD. Immune pathways were only disrupted in STS. snoRNA and pre-miRNA were also differentially expressed in ASD brain.ConclusionsAlterations in sncRNA may underlie dysregulation of molecular pathways implicated in autism. sncRNA transcriptional abnormalities in ASD were apparent in STS and in PAC, a brain region not directly associated with core behavioral impairments. Disruption of miRNA in immune pathways, frequently implicated in ASD, was unique to STS

    microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets.

    Get PDF
    BackgroundmicroRNA (miRNA) are important regulators of gene expression. In patients with ischemic stroke we have previously shown that differences in immune cell gene expression are present. In this study we sought to determine the miRNA that are differentially expressed in peripheral blood cells of patients with acute ischemic stroke and thus may regulate immune cell gene expression.MethodsmiRNA from peripheral blood cells of forty-eight patients with ischemic stroke and vascular risk factor controls were compared. Differentially expressed miRNA in patients with ischemic stroke were determined by microarray with qRT-PCR confirmation. The gene targets and pathways associated with ischemic stroke that may be regulated by the identified miRNA were characterized.ResultsIn patients with acute ischemic stroke, miR-122, miR-148a, let-7i, miR-19a, miR-320d, miR-4429 were decreased and miR-363, miR-487b were increased compared to vascular risk factor controls. These miRNA are predicted to regulate several genes in pathways previously identified by gene expression analyses, including toll-like receptor signaling, NF-κβ signaling, leukocyte extravasation signaling, and the prothrombin activation pathway.ConclusionsSeveral miRNA are differentially expressed in blood cells of patients with acute ischemic stroke. These miRNA may regulate leukocyte gene expression in ischemic stroke including pathways involved in immune activation, leukocyte extravasation and thrombosis

    Smoking affects gene expression in blood of patients with ischemic stroke.

    Get PDF
    ObjectiveThough cigarette smoking (CS) is a well-known risk factor for ischemic stroke (IS), there is no data on how CS affects the blood transcriptome in IS patients.MethodsWe recruited IS-current smokers (IS-SM), IS-never smokers (IS-NSM), control-smokers (C-SM), and control-never smokers (C-NSM). mRNA expression was assessed on HTA-2.0 microarrays and unique as well as commonly expressed genes identified for IS-SM versus IS-NSM and C-SM versus C-NSM.ResultsOne hundred and fifty-eight genes were differentially expressed in IS-SM versus IS-NSM; 100 genes were differentially expressed in C-SM versus C-NSM; and 10 genes were common to both IS-SM and C-SM (P < 0.01; |fold change| ≥ 1.2). Functional pathway analysis showed the 158 IS-SM-regulated genes were associated with T-cell receptor, cytokine-cytokine receptor, chemokine, adipocytokine, tight junction, Jak-STAT, ubiquitin-mediated proteolysis, and adherens junction signaling. IS-SM showed more altered genes and functional networks than C-SM.InterpretationWe propose some of the 10 genes that are elevated in both IS-SM and C-SM (GRP15, LRRN3, CLDND1, ICOS, GCNT4, VPS13A, DAP3, SNORA54, HIST1H1D, and SCARNA6) might contribute to increased risk of stroke in current smokers, and some genes expressed by blood leukocytes and platelets after stroke in smokers might contribute to worse stroke outcomes that occur in smokers

    Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain

    Get PDF
    BackgroundAutism spectrum disorder (ASD) is sexually dimorphic in brain structure, genetics, and behaviors. In studies of brain tissue, the age of the population is clearly a factor in interpreting study outcome, yet sex is rarely considered. To begin to address this issue, we extend our previously published microarray analyses to examine expression of small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), in ASD and in the control temporal cortex in males and females. Predicted miRNA targets were identified as well as the pathways they overpopulate.FindingsAfter considering age, sexual dimorphism in ASD sncRNA expression persists in the temporal cortex and in the patterning that distinguishes regions. Among the sexually dimorphic miRNAs are miR-219 and miR-338, which promote oligodendrocyte differentiation, miR-125, implicated in neuronal differentiation, and miR-488, implicated in anxiety. Putative miRNA targets are significantly over-represented in immune and nervous system pathways in both sexes, consistent with previous mRNA studies. Even for common pathways, the specific target mRNAs are often sexually dimorphic. For example, both male and female target genes significantly populate the Axonal Guidance Signaling pathway, yet less than a third of the targets are common to both sexes.ConclusionsOur findings of sexual dimorphism in sncRNA levels underscore the importance of considering sex, in addition to age, when interpreting molecular findings on ASD brain

    Intracerebral Hemorrhage and Ischemic Stroke of Different Etiologies Have Distinct Alternatively Spliced mRNA Profiles in the Blood: a Pilot RNA-seq Study.

    Get PDF
    Whole transcriptome studies have used 3'-biased expression microarrays to study genes regulated in the blood of stroke patients. However, alternatively spliced messenger RNA isoforms have not been investigated for ischemic stroke or intracerebral hemorrhage (ICH) in animals or humans. Alternative splicing is the mechanism whereby different combinations of exons of a single gene produce distinct mRNA and protein isoforms. Here, we used RNA sequencing (RNA-seq) to determine if alternative splicing differs for ICH and cardioembolic, large vessel and lacunar causes of ischemic stroke compared to controls. RNA libraries from 20 whole blood samples were sequenced to 200 M 2 × 100 bp reads using Illumina sequencing-by-synthesis technology. Differential alternative splicing was assessed using one-way analysis of variance (ANOVA), and differential exon usage was calculated. Four hundred twelve genes displayed differential alternative splicing among the groups (false discovery rate, FDR; p < 0.05). They were involved in cellular immune response, cell death, and cell survival pathways. Distinct expression signatures based on usage of 308 exons (292 genes) differentiated the groups (p < 0.0005; fold change >|1.2|). This pilot study demonstrates that alternatively spliced genes from whole blood differ in ICH compared to ischemic stroke and differ between different ischemic stroke etiologies. These results require validation in a separate cohort

    Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats.

    Get PDF
    Because our recent studies have demonstrated that miR-122 decreased in whole blood of patients and in whole blood of rats following ischemic stroke, we tested whether elevating blood miR-122 would improve stroke outcomes in rats. Young adult rats were subjected to a temporary middle cerebral artery occlusion (MCAO) or sham operation. A polyethylene glycol-liposome-based transfection system was used to administer a miR-122 mimic after MCAO. Neurological deficits, brain infarction, brain vessel integrity, adhesion molecule expression and expression of miR-122 target and indirect-target genes were examined in blood at 24 h after MCAO with or without miR-122 treatment. miR-122 decreased in blood after MCAO, whereas miR-122 mimic elevated miR-122 in blood 24 h after MCAO. Intravenous but not intracerebroventricular injection of miR-122 mimic decreased neurological deficits and brain infarction, attenuated ICAM-1 expression, and maintained vessel integrity after MCAO. The miR-122 mimic also down-regulated direct target genes (e.g. Vcam1, Nos2, Pla2g2a) and indirect target genes (e.g. Alox5, Itga2b, Timp3, Il1b, Il2, Mmp8) in blood after MCAO which are predicted to affect cell adhesion, diapedesis, leukocyte extravasation, eicosanoid and atherosclerosis signaling. The data show that elevating miR-122 improves stroke outcomes and we postulate this occurs via downregulating miR-122 target genes in blood leukocytes
    corecore