219 research outputs found
The Specific Heat of a Trapped Fermi Gas: an Analytical Approach
We find an analytical expression for the specific heat of a Fermi gas in a
harmonic trap using a semi-classical approximation. Our approximation is valid
for kT>hw and in this range it is shown to be highly accurate. We comment on
the semi-classical approximation, presenting an explanation for this high
accuracy.Comment: To be published in Physics Letters A. 7 pages (RevTex) and 2 figures
(postscript
Francisella tularensis Schu S4 lipopolysaccharide core sugar and o-antigen mutants are attenuated in a mouse model of tularemia
The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD(50)) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge
Transport spin polarization of Ni_xFe_{1-x}: electronic kinematics and band structure
We present measurements of the transport spin polarization of Ni_xFe_{1-x}
(0<x<1) using the recently-developed Point Contact Andreev Reflection
technique, and compare them with our first principles calculations of the spin
polarization for this system. Surpisingly, the measured spin polarization is
almost composition-independent. The results clearly demonstrate that the sign
of the transport spin polarization does not coincide with that of the
difference of the densities of states at the Fermi level. Calculations indicate
that the independence of the spin polarization of the composition is due to
compensation of density of states and Fermi velocity in the s- and d- bands
Non-destructive, dynamic detectors for Bose-Einstein condensates
We propose and analyze a series of non-destructive, dynamic detectors for
Bose-Einstein condensates based on photo-detectors operating at the shot noise
limit. These detectors are compatible with real time feedback to the
condensate. The signal to noise ratio of different detection schemes are
compared subject to the constraint of minimal heating due to photon absorption
and spontaneous emission. This constraint leads to different optimal operating
points for interference-based schemes. We find the somewhat counter-intuitive
result that without the presence of a cavity, interferometry causes as much
destruction as absorption for optically thin clouds. For optically thick
clouds, cavity-free interferometry is superior to absorption, but it still
cannot be made arbitrarily non-destructive . We propose a cavity-based
measurement of atomic density which can in principle be made arbitrarily
non-destructive for a given signal to noise ratio
Universality and Critical Phenomena in String Defect Statistics
The idea of biased symmetries to avoid or alleviate cosmological problems
caused by the appearance of some topological defects is familiar in the context
of domain walls, where the defect statistics lend themselves naturally to a
percolation theory description, and for cosmic strings, where the proportion of
infinite strings can be varied or disappear entirely depending on the bias in
the symmetry. In this paper we measure the initial configurational statistics
of a network of string defects after a symmetry-breaking phase transition with
initial bias in the symmetry of the ground state. Using an improved algorithm,
which is useful for a more general class of self-interacting walks on an
infinite lattice, we extend the work in \cite{MHKS} to better statistics and a
different ground state manifold, namely , and explore various different
discretisations. Within the statistical errors, the critical exponents of the
Hagedorn transition are found to be quite possibly universal and identical to
the critical exponents of three-dimensional bond or site percolation. This
improves our understanding of the percolation theory description of defect
statistics after a biased phase transition, as proposed in \cite{MHKS}. We also
find strong evidence that the existence of infinite strings in the Vachaspati
Vilenkin algorithm is generic to all (string-bearing) vacuum manifolds, all
discretisations thereof, and all regular three-dimensional lattices.Comment: 62 pages, plain LaTeX, macro mathsymb.sty included, figures included.
also available on
http://starsky.pcss.maps.susx.ac.uk/groups/pt/preprints/96/96011.ps.g
- …