227 research outputs found
Weak force detection using a double Bose-Einstein condensate
A Bose-Einstein condensate may be used to make precise measurements of weak
forces, utilizing the macroscopic occupation of a single quantum state. We
present a scheme which uses a condensate in a double well potential to do this.
The required initial state of the condensate is discussed, and the limitations
on the sensitivity due to atom collisions and external coupling are analyzed.Comment: 12 pages, 2 figures, Eq.(41) has been correcte
Intensive adoption as a management strategy for unowned, urban cats: A case study of 25 years of trap–assess–resolve (TAR) in Auckland, New Zealand
Globally, unowned urban cats are a major concern because they may suffer from poor welfare and cause problems, including public health risks, nuisances, and urban wildlife predation. While management options are often presented as a choice between culling or trap–neuter–return (TNR), for 25 years, the Lonely Miaow (Inc.) charity in Auckland, New Zealand (hereafter LM), has used a third strategy—intensive adoption or trap–assess–resolve (TAR). As of 2019, of 14,611 unowned cats trapped, 64.2% were adopted, 22.2% were euthanized if unsocialised or in grave ill-health, 5.7% were neutered and returned to the site, and 7.9% had other outcomes, such as being transferred to other shelters. Adoption rates increased over this time, exceeding 80.0% in 2018 and 2019. The cost of processing each cat from capture to adoption rose from NZD 58 in 1999 to NZD 234 by 2017. Approximately 80% of colonies (sites where cats were trapped) were around residential areas. Approximately 22% of cats required veterinary treatment after capture; common ailments included respiratory infections, ringworm, dental problems, and trauma. Consistently, 52% of cats were young kittens (5 years old. TAR avoids euthanasia where possible. Its effectiveness would be enhanced by fewer abandonments of owned cats and kittens, fitting within integrated strategies for the control of unowned cats involving community education. Cat adoptions improve the welfare of cats and, with appropriate husbandry, should alleviate concerns about nuisances, public health, and attacks on wildlife or the cats themselves, essentially benefitting the community and the cats. This case study is relevant to other cities around the world that are seeking to manage unowned cats
An Atom Laser Based on Raman Transitions
In this paper we present an atom laser scheme using a Raman transition for
the output coupling of atoms. A beam of thermal atoms (bosons) in a metastable
atomic state are pumped into a multimode atomic cavity. This cavity is
coupled through spontaneous emission to a single mode of another cavity for the
ground atomic state, . Above a certain threshold pumping rate a large
number of atoms, , builds up in this single quantum state and transitions
to the ground state of the cavity become enhanced by a factor .
Atoms in this state are then coupled to the outside of the cavity with a Raman
transition. This changes the internal state of the atom and imparts a momentum
kick, allowing the atoms to leave the system.Comment: 8 pages, 4 postscript figures, uses RevTex, home page at
http://online.anu.edu.au/Physics/Welcome.html (Some aspects of the exact
physical model have changed from original version. Other general improvements
included
Input-output theory for fermions in an atom cavity
We generalize the quantum optical input-output theory developed for optical
cavities to ultracold fermionic atoms confined in a trapping potential, which
forms an "atom cavity". In order to account for the Pauli exclusion principle,
quantum Langevin equations for all cavity modes are derived. The dissipative
part of these multi-mode Langevin equations includes a coupling between cavity
modes. We also derive a set of boundary conditions for the Fermi field that
relate the output fields to the input fields and the field radiated by the
cavity. Starting from a constant uniform current of fermions incident on one
side of the cavity, we use the boundary conditions to calculate the occupation
numbers and current density for the fermions that are reflected and transmitted
by the cavity
The steady state quantum statistics of a non-Markovian atom laser
We present a fully quantum mechanical treatment of a single-mode atomic
cavity with a pumping mechanism and an output coupling to a continuum of
external modes. This system is a schematic description of an atom laser. In the
dilute limit where atom-atom interactions are negligible, we have been able to
solve this model without making the Born and Markov approximations. When
coupling into free space, it is shown that for reasonable parameters there is a
bound state which does not disperse, which means that there is no steady state.
This bound state does not exist when gravity is included, and in that case the
system reaches a steady state. We develop equations of motion for the two-time
correlation in the presence of pumping and gravity in the output modes. We then
calculate the steady-state output energy flux from the laser.Comment: 14 pages (twocloumn), 6 figure
Quantum Kinetic Theory III: Quantum kinetic master equation for strongly condensed trapped systems
We extend quantum kinetic theory to deal with a strongly Bose-condensed
atomic vapor in a trap. The method assumes that the majority of the vapor is
not condensed, and acts as a bath of heat and atoms for the condensate. The
condensate is described by the particle number conserving Bogoliubov method
developed by one of the authors. We derive equations which describe the
fluctuations of particle number and phase, and the growth of the Bose-Einstein
condensate. The equilibrium state of the condensate is a mixture of states with
different numbers of particles and quasiparticles. It is not a quantum
superposition of states with different numbers of particles---nevertheless, the
stationary state exhibits the property of off-diagonal long range order, to the
extent that this concept makes sense in a tightly trapped condensate.Comment: 3 figures submitted to Physical Review
Non-destructive, dynamic detectors for Bose-Einstein condensates
We propose and analyze a series of non-destructive, dynamic detectors for
Bose-Einstein condensates based on photo-detectors operating at the shot noise
limit. These detectors are compatible with real time feedback to the
condensate. The signal to noise ratio of different detection schemes are
compared subject to the constraint of minimal heating due to photon absorption
and spontaneous emission. This constraint leads to different optimal operating
points for interference-based schemes. We find the somewhat counter-intuitive
result that without the presence of a cavity, interferometry causes as much
destruction as absorption for optically thin clouds. For optically thick
clouds, cavity-free interferometry is superior to absorption, but it still
cannot be made arbitrarily non-destructive . We propose a cavity-based
measurement of atomic density which can in principle be made arbitrarily
non-destructive for a given signal to noise ratio
Stationary quantum statistics of a non-Markovian atom laser
We present a steady state analysis of a quantum-mechanical model of an atom
laser. A single-mode atomic trap coupled to a continuum of external modes is
driven by a saturable pumping mechanism. In the dilute flux regime, where
atom-atom interactions are negligible in the output, we have been able to solve
this model without making the Born-Markov approximation. The more exact
treatment has a different effective damping rate and occupation of the lasing
mode, as well as a shifted frequency and linewidth of the output. We examine
gravitational damping numerically, finding linewidths and frequency shifts for
a range of pumping rates. We treat mean field damping analytically, finding a
memory function for the Thomas-Fermi regime. The occupation and linewidth are
found to have a nonlinear scaling behavior which has implications for the
stability of atom lasers.Comment: 12 pages, 2 figures, submitted to PR
Atom-optics hologram in the time domain
The temporal evolution of an atomic wave packet interacting with object and
reference electromagnetic waves is investigated beyond the weak perturbation of
the initial state. It is shown that the diffraction of an ultracold atomic beam
by the inhomogeneous laser field can be interpreted as if the beam passes
through a three-dimensional hologram, whose thickness is proportional to the
interaction time. It is found that the diffraction efficiency of such a
hologram may reach 100% and is determined by the duration of laser pulses. On
this basis a method for reconstruction of the object image with matter waves is
offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change
- …