20 research outputs found

    Structural Characterization of Protein Folding Intermediates by Oxidative Labeling and Mass Spectrometry

    Get PDF
    A key challenge associated with protein folding studies is the characterization of short-lived intermediates that become populated en route to the native state. In this work, a covalent labeling method was developed that provides insights into the structures of these transient species. Hydroxyl radical (·OH) reacts with solvent-exposed side chains, whereas buried residues are protected. Mass spectrometry is used for monitoring the locations and the extent of labeling. Pulsed ·OH labeling of proteins at selected time points during folding results in high temporal and spatial resolution when compared to existing other labeling methods. This novel technique was validated by studying the kinetic unfolding and refolding of holomyoglobin (hMb) and cytochrome c (cyt c), respectively. The noncovalent prosthetic heme group in hMb was shown to drastically affect the unfolding pathway. Cyt c refolding was found to fold in a stepwise manner. The population of a misfolded cyt c intermediate was also detected. Results in both cases were in accord with published data. Many cellular proteins exist as oligomers. Pulsed ·OH labeling method was therefore extended to monitor the folding and assembly of a 22 kDa homodimeric protein, S100A11. Prior to this study very little information regarding the folding mechanism of this protein was available. ·OH labeling reveals that disruption of the native dimer is followed by the formation of non-native hydrophobic contacts within the denatured monomers. The folding/binding pathway was shown to progress through monomeric and dimeric intermediates. In the final section of this study we applied ·OH labeling to a large monomeric protein that folds to a metastable state. The folding pathway of the 44 kDa protease inhibitor, α1-antitrypsin, was characterized and compared with complementary data from hydrogen/deuterium exchange studies. Our results show that the formation of early tertiary contacts and specific hydrogen bonds guide the protein towards its active, metastable structure. Structural correlation is also seen between a late kinetic species and a previously characterized equilibrium intermediate of a pathogenic mutant. Overall, the results presented highlight the ability of the technique developed in this work to provide in-depth information about the mechanisms of protein folding

    Crowdsourcing hypothesis tests: Making transparent how design choices shape research results

    Get PDF
    To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div

    Time-Dependent Changes in Side-Chain Solvent Accessibility during Cytochrome c Folding Probed by Pulsed Oxidative Labeling and Mass Spectrometry

    No full text
    The current work employs a novel approach for characterizing structural changes during the refolding of acid-denatured cytochrome c (cyt c). At various time points (ranging from 10 ms to 5 min) after a pH jump from 2 to 7, the protein is exposed to a microsecond hydroxyl radical (.OH) pulse that induces oxidative labeling of solvent-exposed side chains. Most of the covalent modifications appear as +16-Da adducts that are readily detectable by mass spectrometry. The overall extent of labeling decreases as folding proceeds, reflecting dramatic changes in the accessibility of numerous residues. Peptide mapping and tandem mass spectrometry reveal that the side chains of C14, C17, H33, F46, Y48, W59, M65, Y67, Y74, M80, I81, and Y97 are among the dominant sites of oxidation. Temporal changes in the accessibility of these residues are consistent with docking of the N- and C-terminal helices as early as 10 ms. However, structural reorganization at the helix interface takes place up to at least 1 s. Initial misligation of the heme iron by H33 leads to distal crowding, giving rise to low solvent accessibility of the displaced (native) M80 ligand and the adjacent I81. W59 retains a surprisingly high level of accessibility long into the folding process, indicating the presence of packing defects in the hydrophobically collapsed core. Overall, the results of this work are consistent with previous hydrogen/deuterium exchange studies that proposed a foldon-mediated mechanism. The structural data obtained by .OH labeling monitor the packing and burial of side chains, whereas hydrogen/deuterium exchange primarily monitors the formation of secondary structure elements. Hence, the two approaches yield complementary information. Considering the very short time scale of pulsed oxidative labeling, an extension of the approach used here to sub-millisecond folding studies should be feasible

    Partially Disordered Proteins Studied by Ion Mobility-Mass Spectrometry: Implications for the Preservation of Solution Phase Structure in the Gas Phase

    No full text
    The coupling of electrospray ionization (ESI) with ion mobility-mass spectrometry (IM-MS) allows structural studies on biological macromolecules in a solvent-free environment. Collision cross sections (CCSs) measured by IM-MS provide a measure of analyte size. For native proteins and their complexes, many structural features can be preserved in the gas phase, making IM-MS a powerful approach for a range of bioanalytical applications. In addition to tightly folded conformers, a large number of partially disordered proteins participate in biological processes and disease mechanisms. It remains unclear to what extent IM-MS is suitable for exploring structural properties of these semifolded species. The current work addresses this question, using myoglobin as model system. This protein follows a sequential unfolding pathway that comprises two partially disordered states, i.e., apo-myoglobin (aMb) at pH 7 and pH 4. IM-MS data acquired for these two conformers were compared to those of native holo-myoglobin (hMb) at pH 7 and extensively unfolded aMb at pH 2. When examining individual aMb charge states, the degree of gas phase unfolding is not strongly correlated with the corresponding solution behavior. A key problem is that non-native conformers generate high ESI charge states, resulting in conformational transitions caused by intramolecular electrostatic repulsion. It is possible to establish a link between solution phase and gas phase structure when normalizing CCS distributions according to their respective ESI-MS signal intensities. This approach yields CCS averages that follow the expected progression hMb<sub>pH 7</sub> < aMb<sub>pH 7</sub> < aMb<sub>pH 4</sub> < aMb<sub>pH 2</sub>. However, this trend mainly reflects the protonation behavior of the conformers during the ESI process, rather than a genuine memory of solution structure. Overall, our data reveal that electrostatically driven expansion as well as collapse events can lead to disparities between gaseous and solution structures for partially unfolded proteins. IM-MS data on non-native conformers should therefore be interpreted with caution

    Submillisecond Protein Folding Events Monitored by Rapid Mixing and Mass Spectrometry-Based Oxidative Labeling

    No full text
    Kinetic measurements can provide insights into protein folding mechanisms. However, the initial (submillisecond) stages of folding still represent a formidable analytical challenge. A number of ultrarapid triggering techniques have been available for some time, but coupling of these techniques with detection methods that are capable of providing detailed structural information has proven to be difficult. The current work addresses this issue by combining submillisecond mixing with laser-induced oxidative labeling. Apomyoglobin (aMb) serves as a model system for our measurements. Exposure of the protein to a brief pulse of hydroxyl radical (·OH) at different time points during folding introduces covalent modifications at solvent accessible side chains. The extent of labeling is monitored using mass spectrometry-based peptide mapping, providing spatially resolved measurements of changes in solvent accessibility. The submillisecond mixer used here improves the time resolution by a factor of 50 compared to earlier ·OH labeling experiments from our laboratory. Data obtained in this way indicate that early aMb folding events are driven by both local and sequence-remote docking of hydrophobic side chains. Assembly of a partially formed A­(E)­G­(H) scaffold after 0.2 ms is followed by stepwise consolidation that ultimately yields the native state. Major conformational changes go to completion within 0.1 s. The technique introduced here is capable of providing in-depth structural information on very short time scales that have thus far been dominated by low resolution (global) spectroscopic probes. By employing submillisecond mixing in conjunction with slower mixing techniques, it is possible to observe complete folding pathways, from fractions of a millisecond all the way to minutes

    Mapping pH-Induced Protein Structural Changes Under Equilibrium Conditions by Pulsed Oxidative Labeling and Mass Spectrometry

    No full text
    Mass spectrometry (MS)-based protein conformational studies are a rapidly growing field. The characterization of partially disordered conformers is of particular interest because these species are not amenable to classical high-resolution techniques. Such equilibrium intermediates can often be populated by exposure to mildly acidic pH. Hydroxyl radical (·OH) introduces oxidative modifications at solvent-accessible side chains, while buried sites are protected. ·OH can be generated by laser photolysis of H<sub>2</sub>O<sub>2</sub> (fast photochemical oxidation of proteins–FPOP). The resulting labeling pattern can be analyzed by MS. The characterization of partially disordered intermediates usually involves comparative measurements under different solvent conditions. It can be challenging to separate structurally induced labeling changes from pH-mediated “secondary” effects. The issue of secondary effects in FPOP has received little prior attention. We demonstrate that with a proper choice of conditions (e.g., in the absence of pH-dependent ·OH scavengers) such undesired phenomena can be almost completely eliminated. Using apomyoglobin as a model system, we map the structure of an intermediate that is formed at pH 4. This species retains a highly protected helix G that is surrounded by partially protected helices A, B, and H. Our results demonstrate the utility of FPOP for the structural characterization of equilibrium intermediates. The near absence of an intrinsic pH dependence represents an advantage compared to hydrogen/deuterium exchange MS

    Utilizing Microchip Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry

    No full text
    Hydrogen exchange (HX) mass spectrometry (MS) of complex mixtures requires a fast, reproducible, and high peak capacity separation prior to MS detection. The current paradigm relies on liquid chromatography (LC) with fast gradients performed at low temperatures to minimize back exchange. Unfortunately, under these conditions, the efficiency of LC is limited due to resistance to mass transfer, reducing the capability to analyze complex samples. Capillary electrophoresis (CE), on the other hand, is not limited by resistance to mass transfer, enabling very rapid separations that are not adversely affected by low temperature. Previously, we have demonstrated an integrated microfluidic device coupling CE with electrospray ionization (ESI) capable of very rapid and high efficiency separations. In this work, we demonstrate the utility of this microchip CE-ESI device for HX MS. High speed CE-ESI of a bovine hemoglobin pepsin digestion was performed in 1 min with a peak capacity of 62 versus a similar LC separation performed in 7 min with peak capacity of 31. A room temperature CE method performed in 1.25 min provided similar deuterium retention as an 8.5 min LC method conducted at 0 °C. Separation of a complex mixture with CE was done with considerably better speed and nearly triple the peak capacity than the equivalent separation by LC. Overall, the results indicate the potential utility of microchip CE-ESI for HX MS

    The Resistivity And Thermoelectric-Power Of Liquid Ag-Pd Alloys

    Get PDF
    The resistivity (?) and the thermoelectric power (S) have been measured as functions of concentration and temperature for the liquid alloy system Ag-Pd. Comparison is made between the experimental results and the theoretical predictions of a nearly free electron model adapted for liquid transition metals. It is concluded that such a theory is unable to reproduce the gross features of the concentration dependence of ? and S even when concentration-dependent effective valencies are introduced. The close similarity between the concentration dependence of the resistivity and the thermoelectric power of solid Ag-Pd alloys at high temperatures and that of the liquid alloys lends support to the alternative s-d scattering model proposed by Mott
    corecore