1,001 research outputs found

    Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy

    Get PDF
    Neurofibrillary tangles (NFTs) are associated with neuronal loss and correlate with cognitive impairment in Alzheimer disease, but how NFTs relate to neuronal death is not clear. We studied cell death in Tg4510 mice that reversibly express P301L mutant human tau and accumulate NFTs using in vivo multiphoton imaging of neurofibrillary pathology, propidium iodide (PI) incorporation into cells, caspase activation and DNA labeling. We first observed that in live mice a minority of neurons was labeled with the caspase probe or with PI fluorescence. These markers of cell stress were localized in the same cells and appeared to be specifically within NFT-bearing neurons. Contrary to expectations, the PI-stained neurons did not die over a day of observation; the presence of Hoechst-positive nuclei in them on the subsequent day indicated that the NFT-associated membrane disruption suggested by PI staining and caspase activation do not lead to acute death of neurons in this tauopathy model. This unique combination of in vivo multiphoton imaging with markers of cell death and pathologic alteration is a powerful tool for investigating neuronal damage associated with neurofibrillary pathology

    Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model

    Get PDF
    Neurofibrillary tangles are a feature of Alzheimer disease and other tauopathies, and while they are generally believed to be markers of neuronal pathology, there is little evidence evaluating whether tangles directly impact neuronal function. To investigate the response of cells in hippocampal circuits to complex behavioral stimuli, we used an environmental enrichment paradigm to induce expression of an immediate-early gene, Arc, in the rTg4510 mouse model of tauopathy. These mice reversibly overexpress P301L tau and exhibit substantial neurofibrillary tangle deposition, neuronal loss, and memory deficits. Employing fluorescent in situ hybridization to detect Arc mRNA, we found that rTg4510 mice have impaired hippocampal Arc expression both without stimulation and in response to environmental enrichment; this likely reflects the combination of functional impairments of existing neurons and loss of neurons. However, tangle-bearing cells were at least as likely as non-tangle-bearing neurons to exhibit Arc expression in response to enrichment. Transgene suppression with doxycycline for 6 weeks resulted in increased percentages of Arc-positive cells in rTg4510 brains compared to untreated transgenics, restoring enrichment-induced Arc mRNA levels to that of wild-type controls despite the continued presence of neurofibrillary pathology. We interpret these data to indicate that soluble tau contributes to impairment of hippocampal function, while tangles do not preclude neurons from responding in a functional circuit

    Thioredoxin Reductase 1 Deficiency Reverses Tumor Phenotype and Tumorigenicity of Lung Carcinoma Cells

    Get PDF
    Dietary selenium has potent cancer prevention activity. Both low molecular weight selenocompounds and selenoproteins are implicated in this effect. Thioredoxin reductase 1 (TR1) is one of the major antioxidant and redox regulators in mammals that supports p53 function and other tumor suppressor activities. However, this selenium-containing oxidoreductase is also overexpressed in many malignant cells and has been proposed as a target for cancer therapy. To further assess the role of TR1 in the malignancy process, we used RNA interference technology to decrease its expression in mouse lung carcinoma (LLC1) cells. Stable transfection of LLC1 cells with a small interfering RNA construct that specifically targets TR1 removal manifested a reversal in the morphology and anchorage-independent growth properties of these cancer cells that made them similar to those of normal cells. The expression of at least two cancer-related protein mRNAs, Hgf and Opn1, were reduced dramatically in the TR1 knockdown cells. Mice injected with the TR1 knockdown showed a dramatic reduction in tumor progression and metastasis compared with those mice injected with the corresponding control vector. In addition, tumors that arose from injected TR1 knockdown cells lost the targeting construct, suggesting that TR1 is essential for tumor growth in mice. These observations provide direct evidence that the reduction of TR1 levels in malignant cells is antitumorigenic and suggest that the enzyme is a prime target for cancer therapy

    Deficiency in the 15 kDa Selenoprotein Inhibits Human Colon Cancer Cell Growth

    Get PDF
    Selenium is an essential micronutrient for humans and animals, and is thought to provide protection against some forms of cancer. These protective effects appear to be mediated, at least in part, through selenium-containing proteins (selenoproteins). Recent studies in a mouse colon cancer cell line have shown that the 15 kDa selenoprotein (Sep15) may also play a role in promoting colon cancer. The current study investigated whether the effects of reversing the cancer phenotype observed when Sep15 was removed in mouse colon cancer cells, were recapitulated in HCT116 and HT29 human colorectal carcinoma cells. Targeted down-regulation of Sep15 using RNAi technology in these human colon cancer cell lines resulted in similarly decreased growth under anchorage-dependent and anchorage-independent conditions. However, the magnitude of reduction in cell growth was much less than in the mouse colon cancer cell line investigated previously. Furthermore, changes in cell cycle distribution were observed, indicating a delayed release of Sep15 deficient cells from the G0/G1 phase after synchronization. The potential mechanism by which human colon cancer cells lacking Sep15 revert their cancer phenotype will need to be explored further

    Replenishment of selenium deficient rats with selenium results in redistribution of the selenocysteine tRNA population in a tissue specific manner

    Get PDF
    AbstractWe reported previously that the selenium status of rats influences both the steady-state levels and distributions of two selenocysteine tRNA isoacceptors and that these isoacceptors differ by a single methyl group attached to the ribosyl moiety at position 34. In this study, we demonstrate that repletion of selenium-deficient rats results in a gradual, tissue-dependent shift in the distribution of these isoacceptors. Rats fed a selenium-deficient diet possess a greater abundance of the species unmethylated on the ribosyl moiety at position 34 compared to the form methylated at this position. A redistribution of the Sec–tRNA isoacceptors occurred in tissues of selenium-supplemented rats whereby the unmethylated form gradually shifted toward the methylated form. This was true in each of four tissues examined, muscle, kidney, liver and heart, although the rate of redistribution was tissue-specific. Muscle manifested a predominance of two minor serine isoacceptors under conditions of extreme selenium-deficiency which also appeared to respond to selenium. Ribosomal binding studies revealed that one of the two additional isoacceptors decodes the serine codeword, AGU, and the second decodes the serine codeword, UCU. Interestingly, muscle and heart were the slower tissues to return to a `selenium adequate' tRNA distribution pattern

    Targeting Thioredoxin Reductase 1 Reduction in Cancer Cells Inhibits Self-Sufficient Growth and DNA Replication

    Get PDF
    Thioredoxin reductase 1 (TR1) is a major redox regulator in mammalian cells. As an important antioxidant selenoprotein, TR1 is thought to participate in cancer prevention, but is also known to be over-expressed in many cancer cells. Numerous cancer drugs inhibit TR1, and this protein has been proposed as a target for cancer therapy. We previously reported that reduction of TR1 levels in cancer cells reversed many malignant characteristics suggesting that deficiency in TR1 function is antitumorigenic. The molecular basis for TR1's role in cancer development, however, is not understood. Herein, we found that, among selenoproteins, TR1 is uniquely overexpressed in cancer cells and its knockdown in a mouse cancer cell line driven by oncogenic k-ras resulted in morphological changes characteristic of parental (normal) cells, without significant effect on cell growth under normal growth conditions. When grown in serum-deficient medium, TR1 deficient cancer cells lose self-sufficiency of growth, manifest a defective progression in their S phase and a decreased expression of DNA polymerase α, an enzyme important in DNA replication. These observations provide evidence that TR1 is critical for self-sufficiency in growth signals of malignant cells, that TR1 acts largely as a pro-cancer protein and it is indeed a primary target in cancer therapy

    Podocyte specific knock out of selenoproteins does not enhance nephropathy in streptozotocin diabetic C57BL/6 mice

    Full text link
    Abstract Background Selenoproteins contain selenocysteine (Sec), commonly considered the 21st genetically encoded amino acid. Many selenoproteins, such as the glutathione peroxidases and thioredoxin reductases, protect cells against oxidative stress by functioning as antioxidants and/or through their roles in the maintenance of intracellular redox balance. Since oxidative stress has been implicated in the pathogenesis of diabetic nephropathy, we hypothesized that selenoproteins protect against this complication of diabetes. Methods C57BL/6 mice that have a podocyte-specific inability to incorporate Sec into proteins (denoted in this paper as PodoTrsp-/-) and control mice were made diabetic by intraperitoneal injection of streptozotocin, or were injected with vehicle. Blood glucose, body weight, microalbuminuria, glomerular mesangial matrix expansion, and immunohistochemical markers of oxidative stress were assessed. Results After 3 and 6 months of diabetes, control and PodoTrsp-/- mice had similar levels of blood glucose. There were no differences in urinary albumin/creatinine ratios. Periodic acid-Schiff staining to examine mesangial matrix expansion also demonstrated no difference between control and PodoTrsp-/- mice after 6 months of diabetes, and there were no differences in immunohistochemical stainings for nitrotyrosine or NAD(P)H dehydrogenase, quinone 1. Conclusion Loss of podocyte selenoproteins in streptozotocin diabetic C57BL/6 mice does not lead to increased oxidative stress as assessed by nitrotyrosine and NAD(P)H dehydrogenase, quinone 1 immunostaining, nor does it lead to worsening nephropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/112674/1/12882_2008_Article_98.pd

    Specific Excision of the Selenocysteine tRNA\u3csup\u3e [Ser]Sec\u3c/sup\u3e (\u3ci\u3eTrsp\u3c/i\u3e) Gene in Mouse Liver Demonstrates an Essential Role of Selenoproteins in Liver Function

    Get PDF
    Selenium is essential in mammalian embryonic development. However, in adults, selenoprotein levels in several organs including liver can be substantially reduced by selenium deficiency without any apparent change in phenotype. To address the role of selenoproteins in liver function, mice homozygous for a floxed allele encoding the selenocysteine (Sec) tRNA [Ser]Sec gene were crossed with transgenic mice carrying the Cre recombinase under the control of the albumin promoter that expresses the recombinase specifically in liver. Recombination was nearly complete in mice 3 weeks of age, whereas liver selenoprotein synthesis was virtually absent, which correlated with the loss of Sec tRNA [Ser]Sec and activities of major selenoproteins. Total liver selenium was dramatically decreased, whereas levels of low molecular weight selenocompounds were little affected. Plasma selenoprotein P levels were reduced by about 75%, suggesting that selenoprotein P is primarily exported from the liver. Glutathione S-transferase levels were elevated in the selenoprotein-deficient liver, suggesting a compensatory activation of this detoxification program. Mice appeared normal until about 24 h before death. Most animals died between 1 and 3 months of age. Death appeared to be due to severe hepatocellular degeneration and necrosis with concomitant necrosis of peritoneal and retroperitoneal fat. These studies revealed an essential role of selenoproteins in liver function

    The zebrafish genome contains two distinct selenocysteine tRNA[Ser]Sec genes

    Get PDF
    AbstractThe zebrafish is widely used as a model system for studying mammalian developmental genetics and more recently, as a model system for carcinogenesis. Since there is mounting evidence that selenium can prevent cancer in mammals, including humans, we characterized the selenocysteine tRNA[Ser]Sec gene and its product in zebrafish. Two genes for this tRNA were isolated and sequenced and were found to map at different loci within the zebrafish genome. The encoding sequences of both are identical and their flanking sequences are highly homologous for several hundred bases in both directions. The two genes likely arose from gene duplication which is a common phenomenon among many genes in this species. In addition, zebrafish tRNA[Ser]Sec was isolated from the total tRNA population and shown to decode UGA in a ribosomal binding assay
    • …
    corecore