27 research outputs found

    Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo

    Get PDF
    Dorsal/ventral patterning of the sea urchin embryo depends upon the establishment of a Nodal-expressing ventral organizer. Recently, we showed that spatial positioning of this organizer relies on the dorsal-specific transcription of the Hbox12 repressor. Building on these findings, we determined the influence of the epigenetic milieu on the expression of hbox12 and nodal genes. We find that Trichostatin-A, a potent and selective histone-deacetylases inhibitor, induces histone hyperacetylation in hbox12 chromatin, evoking broad ectopic expression of the gene. Transcription of nodal concomitantly drops, prejudicing dorsal/ventral polarity of the resulting larvae. Remarkably, impairing hbox12 function, either in a spatially-restricted sector or in the whole embryo, specifically rescues nodal transcription in Trichostatin-A-treated larvae. Beyond strengthen the notion that nodal expression is not allowed in the presence of functional Hbox12 in the same cells, these results highlight a critical role of histone deacetylases in regulating the spatial expression of hbox12

    Expression of matrix metalloproteinases, their inhibitors, and lysyl oxidase in myocardial samples from dogs with end-stage systemic and cardiac diseases

    Full text link
    OBJECTIVE: To compare the degree of mRNA expression for matrix metalloproteinases (MMPs), tissue inhibitors (TIMPs), and lysyl oxidase in myocardial samples from dogs with cardiac and systemic diseases and from healthy control dogs. SAMPLE: Myocardial samples from the atria, ventricles, and septum of 8 control dogs, 6 dogs with systemic diseases, 4 dogs with dilated cardiomyopathy (DCM), and 5 dogs with other cardiac diseases. PROCEDURES: Degrees of mRNA expression for MMP-1, -2, -3, -9, and -13; TIMP-1, -2, -3, and -4; and lysyl oxidase were measured via quantitative real-time PCR assay. Histologic examination of the hearts was performed to identify pathological changes. RESULTS: In myocardial samples from control dogs, only TIMP-3 and TIMP-4 mRNA expression was detected, with a significantly higher degree in male versus female dogs. In dogs with systemic and cardiac diseases, all investigated markers were expressed, with a significantly higher degree of mRNA expression than in control dogs. Furthermore, the degree of expression for MMP-2, TIMP-1, and TIMP-2 was significantly higher in dogs with DCM than in dogs with systemic diseases and cardiac diseases other than DCM. Expression was generally greater in atrial than in ventricular tissue for MMP-2, MMP-13, and lysyl oxidase in samples from dogs with atrial fibrillation. CONCLUSIONS AND CLINICAL RELEVANCE: Degrees of myocardial MMP, TIMP, and lysyl oxidase mRNA expression were higher in dogs with cardiac and systemic diseases than in healthy dogs, suggesting that expression of these markers is a nonspecific consequence of end-stage diseases. Selective differences in the expression of some markers may reflect specific pathogenic mechanisms and may play a role in disease progression, morbidity and mortality rates, and treatment response
    corecore