82 research outputs found
Recommended from our members
The Cumulative Semantic Cost Does Not Reflect Lexical Selection By Competition
The cumulative semantic cost describes a phenomenon in which picture naming latencies increase monotonically with each additional within-category item that is named in a sequence of pictures. Here we test whether the cumulative semantic cost requires the assumption of lexical selection by competition. In Experiment 1 participants named a sequence of pictures, while in Experiment 2 participants named words instead of pictures, preceded by a gender marked determiner. We replicate the basic cumulative semantic cost with pictures (Exp. 1) and show that there is no cumulative semantic cost for word targets (Exp. 2). This pattern was replicated in Experiment 3 in which pictures and words were named along with their gender marked definite determiner, and were intermingled within the same experimental design. In addition, Experiment 3 showed that while picture naming induces a cumulative semantic cost for subsequently named words, word naming does not induce a cumulative semantic cost for subsequently named pictures. These findings suggest that the cumulative semantic cost arises prior to lexical selection and that the effect arises due to incremental changes to the connection weights between semantic and lexical representations.Psycholog
Spatial Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Systems
It is widely argued that the ability to recognize and identify manipulable objects depends on the retrieval and simulation of action-based information associated with using those objects. Evidence for that view comes from fMRI studies that have reported differential BOLD contrast in dorsal visual stream regions when participants view manipulable objects compared with a range of baseline categories. An alternative interpretation is that processes internal to the ventral visual pathway are sufficient to support the visual identification of manipulable objects and that the retrieval of object-associated use information is contingent on analysis of the visual input by the ventral stream. Here, we sought to distinguish these two perspectives by exploiting the fact that the dorsal stream is largely driven by magnocellular input, which is biased toward low spatial frequency visual information. Thus, any tool-selective responses in parietal cortex that are driven by high spatial frequencies would be indicative of inputs from the ventral visual pathway. Participants viewed images of tools and animals containing only low, or only high, spatial frequencies during fMRI. We find an internal parcellation of left parietal "tool-preferring" voxels: Inferior aspects of left parietal cortex are driven by high spatial frequency information and have privileged connectivity with ventral stream regions that show similar category preferences, whereas superior regions are driven by low spatial frequency information. Our findings suggest that the automatic activation of complex object-associated manipulation knowledge is contingent on analysis of the visual input by the ventral visual pathway
Recommended from our members
The Role of the Dorsal Visual Processing Stream in Tool Identification
The dorsal visual processing stream subserves object-directed action, whereas the ventral visual processing stream subserves visual object recognition. Little is known about how information computed by dorsal-stream structures influences object recognition. We used continuous flash suppression to functionally separate information computed by the dorsal stream from that computed by the ventral stream. We show that information originating from the dorsal stream influences not only decisions requiring the selection of superordinate category labels, but also decisions that entail the selection of a basic-level object. We further show that information computed by the dorsal stream does not carry specific functional information about objects. Our results indicate that the dorsal stream, in isolation from the ventral stream, is agnostic as to the identity of the objects that it processes. We suggest that structures within the dorsal visual processing stream compute motor-relevant information (e.g., graspability), which influences the identification of manipulable objects, and is not either about the function of the object or function-specific.Psycholog
Recommended from our members
Differential Activity for Animals and Manipulable Objects in the Anterior Temporal Lobes
Neuropsychological evidence has highlighted the role of the anterior temporal lobes in the processing of conceptual knowledge. That putative role is only beginning to be investigated with fMRI as methodological advances are able to compensate for well-known susceptibility artifacts that affect the quality of the BOLD signal. In this article, we described differential BOLD activation for pictures of animals and manipulable objects in the anterior temporal lobes, consistent with previous neuropsychological findings. Furthermore, we found that the pattern of BOLD signal in the anterior temporal lobes is qualitatively different from that in the fusiform gyri. The latter regions are activated to different extents but always above baseline by images of the preferred and of the nonpreferred categories, whereas the anterior temporal lobes tend to be activated by images of the preferred category and deactivated (BOLD below baseline) by images of the nonpreferred category. In our experimental design, we also manipulated the decision that participants made over stimuli from the different semantic categories. We found that in the right temporal pole, the BOLD signal shows some evidence of being modulated by the task that participants were asked to perform, whereas BOLD activity in more posterior regions (e.g., the fusiform gyri) is not modulated by the task. These results reconcile the fMRI literature with the neuropsychological findings of deficits for animals after damage to the right temporal pole and suggest that anterior and posterior regions within the temporal lobes involved in object processing perform qualitatively different computations.Psycholog
Recommended from our members
Concepts and Categories: A Cognitive Neuropsychological Perspective
One of the most provocative and exciting issues in cognitive science is how neural specificity for semantic categories of common objects arises in the functional architecture of the brain. More than two decades of research on the neuropsychological phenomenon of category-specific semantic deficits has generated detailed claims about the organization and representation of conceptual knowledge. More recently, researchers have sought to test hypotheses developed on the basis of neuropsychological evidence with functional imaging. From those two fields, the empirical generalization emerges that object domain and sensory modality jointly constrain the organization of knowledge in the brain. At the same time, research within the embodied cognition framework has highlighted the need to articulate how information is communicated between the sensory and motor systems, and processes that represent and generalize abstract information. Those developments point toward a new approach for understanding category specificity in terms of the coordinated influences of diverse regions and cognitive systems.Psycholog
Affect of the unconscious: Visually suppressed angry faces modulate our decisions
Emotional and affective processing imposes itself over cognitive processes and modulates our perception of the surrounding environment. In two experiments, we addressed the issue of whether nonconscious processing of affect can take place even under deep states of unawareness, such as those induced by interocular suppression techniques, and can elicit an affective response that can influence our understanding of the surrounding environment. In Experiment 1, participants judged the likeability of an unfamiliar item--a Chinese character--that was preceded by a face expressing a particular emotion (either happy or angry). The face was rendered invisible through an interocular suppression technique (continuous flash suppression; CFS). In Experiment 2, backward masking (BM), a less robust masking technique, was used to render the facial expressions invisible. We found that despite equivalent phenomenological suppression of the visual primes under CFS and BM, different patterns of affective processing were obtained with the two masking techniques. Under BM, nonconscious affective priming was obtained for both happy and angry invisible facial expressions. However, under CFS, nonconscious affective priming was obtained only for angry facial expressions. We discuss an interpretation of this dissociation between affective processing and visual masking techniques in terms of distinct routes from the retina to the amygdala
Grasping with the eyes: The role of elongation in visual recognition of manipulable objects
Processing within the dorsal visual stream subserves object-directed action, whereas visual object recognition is mediated by the ventral visual stream. Recent findings suggest that the computations performed by the dorsal stream can nevertheless influence object recognition. Little is known, however, about the type of dorsal stream information that is available to assist in object recognition. Here, we present a series of experiments that explored different psychophysical manipulations known to bias the processing of a stimulus toward the dorsal visual stream in order to isolate its contribution to object recognition. We show that elongated-shaped stimuli, regardless of their semantic category and familiarity, when processed by the dorsal stream, elicit visuomotor grasp-related information that affects how we categorize manipulable objects. Elongated stimuli may reduce ambiguity during grasp preparation by providing a coarse cue to hand shaping and orientation that is sufficient to support action planning. We propose that this dorsal-stream-based analysis of elongation along a principal axis is the basis for how the dorsal visual object processing stream can affect categorization of manipulable objects
Intraoperative Cortical Localization of Music and Language Reveals Signatures of Structural Complexity in Posterior Temporal Cortex
Language and music involve the productive combination of basic units into structures. It remains unclear whether brain regions sensitive to linguistic and musical structure are co-localized. We report an intraoperative awake craniotomy in which a left-hemispheric language-dominant professional musician underwent cortical stimulation mapping (CSM) and electrocorticography of music and language perception and production during repetition tasks. Musical sequences were melodic or amelodic, and differed in algorithmic compressibility (Lempel-Ziv complexity). Auditory recordings of sentences differed in syntactic complexity (single vs. multiple phrasal embeddings). CSM of posterior superior temporal gyrus (pSTG) disrupted music perception and production, along with speech production. pSTG and posterior middle temporal gyrus (pMTG) activated for language and music (broadband gamma; 70-150 Hz). pMTG activity was modulated by musical complexity, while pSTG activity was modulated by syntactic complexity. This points to shared resources for music and language comprehension, but distinct neural signatures for the processing of domain-specific structural features
What is in a reach? Domain-general spatial modulation of motor responses by number representations
Gaze, pointing, and reaching movements are thought to provide a window to internal cognitive states. In the case of numerical cognition, it has been found that the left-right deviation of a reaching movement is modulated by the relative magnitude of values in a number comparison task. Some have argued that these patterns directly reflect the representation of a logarithmically compressed mental number line (direct mapping view). However, other studies suggest that the modulation of motor outputs by numerical value could be a more general decision-making phenomenon (response competition view). Here we test the generality of interactions between the motor system and numerical processing by comparing subjects' reach trajectories during two different nonverbal tasks: numerosity comparison and facial expression comparison. We found that reaching patterns were practically identical in both tasks – reach trajectories were equally sensitive to stimulus similarity in the numerical and face comparisons. The data provide strong support for the response competition view that motor outputs are modulated by domain-general decision processes, and reflect generic decision confidence or accumulation of evidence related to mental comparison
- …