10,020 research outputs found

    The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 3: Intensive use of living resources, agriculture. Part 2: Distribution effects

    Get PDF
    The results of an investigation of the value of improving information for forecasting future crop harvests are described. A theoretical model is developed to calculate the value of increased speed of availablitiy of that information. The analysis of U.S. domestic wheat consumption was implemented. New estimates of a demand function for wheat and of a cost of storage function were involved, along with a Monte Carlo simulation for the wheat spot and future markets and a model of market determinations of wheat inventories. Results are shown to depend critically on the accuracy of current and proposed measurement techniques

    The value of improved (ERS) information based on domestic distribution effects of U.S. agriculture crops

    Get PDF
    The value of improving information for forecasting future crop harvests was investigated. Emphasis was placed upon establishing practical evaluation procedures firmly based in economic theory. The analysis was applied to the case of U.S. domestic wheat consumption. Estimates for a cost of storage function and a demand function for wheat were calculated. A model of market determinations of wheat inventories was developed for inventory adjustment. The carry-over horizon is computed by the solution of a nonlinear programming problem, and related variables such as spot and future price at each stage are determined. The model is adaptable to other markets. Results are shown to depend critically on the accuracy of current and proposed measurement techniques. The quantitative results are presented parametrically, in terms of various possible values of current and future accuracies

    The Effects of Tax Law Changes on Property-Casualty Insurance Prices

    Get PDF
    One of the most important components of the balance sheet of a property-casualty insurance company is the loss reserve. In spite of what the term may suggest, a loss reserve is not a pot of funds set aside for the uncertain future. It is an accounting entry, a liability on the balance sheet. More precisely termed the unpaid-losses account, the loss reserve expresses the amount the company expects to pay out in the future to cover indemnity payments that will come due on policies already written for losses that have already been incurred and to cover the costs of dealing with the associated claims. The latter category of costs, which includes, for example, the litigation costs associated with settling claims, is called loss-adjustment expenses. If loss reserves were determined solely on the basis of pure insurance accounting theory, they would reflect only those factors that affect the size, frequency, and pattern of future claim payments and loss-adjustment expenses. Such factors would include changes in patterns of actual claim payments; changes in inflation rates, weather patterns, and technology; and, particularly significant in the context of liability insurance, trends in tort doctrines and jury awards. In practice, however, loss reserves are influenced by other considerations as well, considerations such as how the reported reserves will affect the likelihood of regulatory scrutiny, the perceptions of investors, and the firm\u27s income tax liability. In this paper, we begin to examine the effects of income tax rules on property-casualty reserving practices

    The Influence of Income Tax Rules on Insurance Reserves

    Get PDF
    An insurance company is a financial intermediary whose main line of business is the sale of a particular type of contingent contract, called an insurance policy. Under this contract, the insurer promises to pay some amount to the policyholder, or to some other beneficiary, following the occurrence of an insured event. In the context of property-casualty insurance, the relevant insured events include, for example, the accidental destruction of the insured\u27s property or the award of a liability judgment against the insured. In return for this promise the insured pays the insurer a premium. The premium and the earnings on the premium are the,n used by the insurer to cover its administrative costs, to pay the eventual loss claims that arise under the policy, and to provide a profit to the owners of the insurance company. During the 1980s, the federal income tax treatment of property-casualty insurers and their policyholders underwent several important changes, the most significant of which came in 1986. A priori reasoning suggests that the income tax treatment of insurance companies should affect equilibrium prices of insurance. In this article we develop theoretical predictions for how these changes should have affected the equilibrium prices of property-casualty insurance policies, and we explore the extent to which the theoretical predictions are reflected in the available data on industry underwriting experience

    New atlas of IR solar spectra

    Get PDF
    Over 4500 absorption lines have been marked on the spectra and the corresponding line positions tabulated. The associated absorbing telluric or solar species for more than 90% of these lines have been identified and only a fraction of the unidentified lines have peak absorptions greater than a few percent. The high resolution and the low Sun spectra greatly enhance the sensitivity limits for identification of trace constituents

    Structure and Dynamics of the Globular Cluster Palomar 13

    Get PDF
    We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of σ = 2.2 ± 0.4 km s^(–1). We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is σ = 0.7^(+0.6)_(–0.5) km s^(–1). Combining our DEIMOS data with literature values, our final velocity dispersion is σ = 0.4^(+0.4)_( –0.3) km s^(–1). We determine a spectroscopic metallicity of [Fe/H] = –1.6 ± 0.1 dex, placing a 1σ upper limit of σ_([Fe/H]) ~ 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be M_V = –2.8 ± 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters (Σ α r^η, η = –2.8 ± 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M_(1/2) = 1.3^(+2:7)_(–1.3) × 10^3 M_☉ and a mass-to-light ratio of M/L_V = 2.4^(+5.0)_(–2.4) M_☉/L_☉. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither significant dark matter, nor extreme tidal heating, is required to explain the cluster dynamics

    Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

    Get PDF
    Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.Comment: 16 page

    Massive Star Formation in the Molecular Ring Orbiting the Black Hole at the Galactic Center

    Full text link
    A ring of dense molecular gas extending 2-7 pc orbits the supermassive black hole Sgr A* at the center of our Galaxy. Using the Green Bank Telescope, we detected water maser lines and both narrow (0.35 km/s) and broad (30 - 50 km/s) methanol emission from the molecular ring. Two of the strongest methanol lines at 44 GHz are confirmed as masers by interferometric observations. These class I methanol masers are collisionally excited and are signatures of early phases of massive star formation in the disk of the Galaxy, suggesting that star formation in the molecular ring is in its early phase. Close inspection of the kinematics of the associated molecular clumps in the HCN (J=1-0) line reveals broad red-shifted wings indicative of disturbance by protostellar outflows from young (few times 10^4 yr), massive stars embedded in the clumps. The thermal methanol profile has a similar shape, with a narrow maser line superimposed on a broad, red-shifted wing. Additional evidence for the presence of young massive protostars is provided by shocked molecular hydrogen and a number of striking ionized and molecular linear filaments in the vicinity of methanol sources suggestive of 0.5-pc scale protostellar jets. Given that the circumnuclear molecular ring is kinematically unsettled and thus is likely be the result of a recent capture, the presence of both methanol emission and broad, red-shifted HCN emission suggests that star formation in the circumnuclear ring is in its infancy.Comment: 13 pages, 4 figures, ApJ Letters (in press

    Near-Infrared Molecular Hydrogen Emission from the Central Regions of Galaxies: Regulated Physical Conditions in the Interstellar Medium

    Full text link
    The central regions of many interacting and early-type spiral galaxies are actively forming stars. This process affects the physical and chemical properties of the local interstellar medium as well as the evolution of the galaxies. We observed near-infrared H2 emission lines: v=1-0 S(1), 3-2 S(3), 1-0 S(0), and 2-1 S(1) from the central ~1 kpc regions of the archetypical starburst galaxies, M82 and NGC 253, and the less dramatic but still vigorously star-forming galaxies, NGC 6946 and IC 342. Like the far-infrared continuum luminosity, the near-infrared H2 emission luminosity can directly trace the amount of star formation activity because the H2 emission lines arise from the interaction between hot and young stars and nearby neutral clouds. The observed H2 line ratios show that both thermal and non-thermal excitation are responsible for the emission lines, but that the great majority of the near-infrared H2 line emission in these galaxies arises from energy states excited by ultraviolet fluorescence. The derived physical conditions, e.g., far-ultraviolet radiation field and gas density, from [C II] and [O I] lines and far-infrared continuum observations when used as inputs to photodissociation models, also explain the luminosity of the observed H2 v=1-0 S(1) line. The ratio of the H2 v=1-0 S(1) line to far-IR continuum luminosity is remarkably constant over a broad range of galaxy luminosities; L_H2/L_FIR = about 10^{-5}, in normal late-type galaxies (including the Galactic center), in nearby starburst galaxies, and in luminous IR galaxies (LIRGs: L_FIR > 10^{11} L_sun). Examining this constant ratio in the context of photodissociation region models, we conclude that it implies that the strength of the incident UV field on typical molecular clouds follows the gas density at the cloud surface.Comment: Accepted for ApJ, 24 pages, 17 figures, for complete PDF file, see http://kao.re.kr/~soojong/mypaper/2004_pak_egh2.pd
    corecore