2 research outputs found

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    The VIRGO Project: A wide band antenna for gravitational wave detection

    No full text
    The status of advancement of the VIRGO Project is presented: the first-generation results from the Pisa seismic noise super attenuator give an upper limit to the noise transfer function of 2 × 10−8 at 10 Hz. The upper limit to the absolute noise of the 400 kg test mass at 10 Hz has been measured to be 1.5 × 10−13 m/√Hz. The scheme and the related problems of the VIRGO interferometer, which is supposed to work down to 10 Hz, are also presented. At the 3rd Pisa Meeting in 1986 we presented the idea of what could be a very efficient seismic noise reduction system able to give a sensitivity h ∼ 10−25 at 10 Hz, in a 3 km interferometer for 1 year integration time. Now we have two new facts to present: the first is that the attenuation has been built, is working in Pisa, and shows remarkable characteristics. The second is the Italian-French interferometer VIRGO [1,2], a 3 km long antenna for low and high frequency (10–1000 Hz) gravitational wave (GW) detection. These two items will be presented in this article
    corecore