65 research outputs found

    The OSIRIS Lens-Amplified Survey (OLAS) I: Dynamical Effects of Stellar Feedback in Low Mass Galaxies at z ~ 2

    Full text link
    We introduce the OSIRIS Lens-Amplified Survey (OLAS), a kinematic survey of gravitationally lensed galaxies at cosmic noon taken with Keck adaptive optics. In this paper we present spatially resolved spectroscopy and nebular emission kinematic maps for 17 star forming galaxies with stellar masses 8 < log(MM_*/MM_{\odot}) < 9.8 and redshifts 1.2 < z < 2.3. OLAS is designed to probe the stellar mass (MM_*) and specific star formation rate (sSFR) range where simulations suggest that stellar feedback is most effective at driving gaseous outflows that create galaxy-wide potential fluctuations which can generate dark matter cores. We compare our kinematic data with the trend between sSFR, MM_* and Hα\alpha velocity dispersion, σ\sigma, from the Feedback In Realistic Environments (FIRE) simulations. Our observations reveal a correlation between sSFR and sigma at fixed MM_* that is similar to the trend predicted by simulations: feedback from star formation drives star-forming gas and newly formed stars into more dispersion dominated orbits. The observed magnitude of this effect is in good agreement with the FIRE simulations, in which feedback alters the central density profiles of low mass galaxies, converting dark matter cusps into cores over time. Our data support the scenario that stellar feedback drives gaseous outflows and potential fluctuations, which in turn drive dark matter core formation in dwarf galaxies.Comment: 9 pages (5 figures) with 9 page appendix (17 figures). Accepted to Ap

    On Dark Peaks and Missing Mass: A Weak-Lensing Mass Reconstruction of the Merging Cluster System A520

    Get PDF
    Merging clusters of galaxies are unique in their power to directly probe and place limits on the self-interaction cross-section of dark matter. Detailed observations of several merging clusters have shown the intracluster gas to be displaced from the centroids of dark matter and galaxy density by ram pressure, while the latter components are spatially coincident, consistent with collisionless dark matter. This has been used to place upper limits on the dark matter particle self-interaction cross-section of order 1 sq cm/g. The cluster A520 has been seen as a possible exception. We revisit A520 presenting new Hubble Space Telescope Advanced Camera for Surveys mosaic images and a Magellan image set. We perform a detailed weak-lensing analysis and show that the weak-lensing mass measurements and morphologies of the core galaxy-filled structures are mostly in good agreement with previous works. There is, however, one significant difference: We do not detect the previously claimed "dark core" that contains excess mass with no significant galaxy overdensity at the location of the X-ray plasma. This peak has been suggested to be indicative of a large self-interaction cross-section for dark matter (at least approx 5alpha larger than the upper limit of 0.7 sq cm/g determined by observations of the Bullet Cluster). We find no such indication and instead find that the mass distribution of A520, after subtraction of the X-ray plasma mass, is in good agreement with the luminosity distribution of the cluster galaxies.We conclude that A520 shows no evidence to contradict the collisionless dark matter scenario

    The Grism Lens-Amplified Survey from Space (GLASS). IX. The dual origin of low-mass cluster galaxies as revealed by new structural analyses

    Get PDF
    Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Lens-Amplified Survey from Space, we analyze 2200 cluster and 1748 field galaxies at 0.2z0.70.2\leq z\leq0.7 to determine the impact of environment on galaxy size and structure at logM/M>7.8\log M_*/M_\odot>7.8, an unprecedented limit at these redshifts. Based on simple assumptions-re=f(M)r_e=f(M_*)-we find no significant differences in half-light radii (rer_e) between equal-mass cluster or field systems. More complex analyses-re=f(M,UV,n,z,Σr_e=f(M_*,U-V,n,z,\Sigma)-reveal local density (Σ(\Sigma) to induce only a 7%±3%7\% \pm 3\% (95%95\% confidence) reduction in rer_e beyond what can be accounted for by UVU-V color, Sersic index (nn), and redshift (zz) effects.Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-rer_e correlation in low-mass passive cluster galaxies (logM/M<9.8\log M_*/M_\odot<9.8) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large-rer_e low-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation).Conversely, 20%\sim20\% of small-rer_e low-mass passive cluster galaxies appear to have been in place since z3z\sim3. Given the consistency of the small-rer_e galaxies' stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms are mainly restricted to the lowest masses.Comment: The accepted version. The catalog is available through the GLASS web page (http://glass.astro.ucla.edu), or https://www.astr.tohoku.ac.jp/~mtakahiro/Publication/Morishita17

    Inferences on the Timeline of Reionization at z~8 From the KMOS Lens-Amplified Spectroscopic Survey

    Get PDF
    Detections and non-detections of Lyman alpha (Lyα\alpha) emission from z>6z>6 galaxies (<1<1 Gyr after the Big Bang) can be used to measure the timeline of cosmic reionization. Of key interest to measuring reionization's mid-stages, but also increasing observational challenge, are observations at z > 7, where Lyα\alpha redshifts to near infra-red wavelengths. Here we present a search for z > 7.2 Lyα\alpha emission in 53 intrinsically faint Lyman Break Galaxy candidates, gravitationally lensed by massive galaxy clusters, in the KMOS Lens-Amplified Spectroscopic Survey (KLASS). With integration times of ~7-10 hours, we detect no Lyα\alpha emission with S/N>5 in our sample. We determine our observations to be 80% complete for 5σ\sigma spatially and spectrally unresolved emission lines with integrated line flux >5.7×1018>5.7\times10^{-18} erg s1^{-1} cm2^{-2}. We define a photometrically selected sub-sample of 29 targets at z=7.9±0.6z=7.9\pm0.6, with a median 5σ\sigma Lyα\alpha EW limit of 58A. We perform a Bayesian inference of the average intergalactic medium (IGM) neutral hydrogen fraction using their spectra. Our inference accounts for the wavelength sensitivity and incomplete redshift coverage of our observations, and the photometric redshift probability distribution of each target. These observations, combined with samples from the literature, enable us to place a lower limit on the average IGM neutral hydrogen fraction of >0.76  (68%),  >0.46  (95%)> 0.76 \; (68\%), \; > 0.46 \; (95\%) at z ~ 8, providing further evidence of rapid reionization at z~6-8. We show that this is consistent with reionization history models extending the galaxy luminosity function to MUV12M_\textrm{UV} \lesssim -12, with low ionizing photon escape fractions, fesc15%f_\textrm{esc} \lesssim 15\%.Comment: Accepted for publication in MNRA

    The Grism Lens-Amplified Survey from Space (GLASS). V. Extent and spatial distribution of star formation in z~0.5 cluster galaxies

    Get PDF
    We present the first study of the spatial distribution of star formation in z~0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS0717.5+3745 and MACS1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10^8-10^11 M_sun, and star formation rates in the range 1-20 M_sun/yr. Both in clusters and in the field, H{\alpha} is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. In ~20% of the cases, the H{\alpha} emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the H{\alpha} emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models and find no conclusive results. The diversity of morphologies and sizes observed in H_alpha illustrates the complexity of the environmental process that regulate star formation. Upcoming analysis of the full GLASS dataset will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial dataset.Comment: 18 pages, 15 figures, accepted for publication in Ap

    Stellar Properties of z ~ 8 Galaxies in the Reionization Lensing Cluster Survey

    Full text link
    Measurements of stellar properties of galaxies when the universe was less than one billion years old yield some of the only observational constraints of the onset of star formation. We present here the inclusion of \textit{Spitzer}/IRAC imaging in the spectral energy distribution fitting of the seven highest-redshift galaxy candidates selected from the \emph{Hubble Space Telescope} imaging of the Reionization Lensing Cluster Survey (RELICS). We find that for 6/8 \textit{HST}-selected z8z\gtrsim8 sources, the z8z\gtrsim8 solutions are still strongly preferred over zz\sim1-2 solutions after the inclusion of \textit{Spitzer} fluxes, and two prefer a z7z\sim 7 solution, which we defer to a later analysis. We find a wide range of intrinsic stellar masses (5×106M5\times10^6 M_{\odot} -- 4×1094\times10^9 MM_{\odot}), star formation rates (0.2-14 Myr1M_{\odot}\rm yr^{-1}), and ages (30-600 Myr) among our sample. Of particular interest is Abell1763-1434, which shows evidence of an evolved stellar population at z8z\sim8, implying its first generation of star formation occurred just <100< 100 Myr after the Big Bang. SPT0615-JD, a spatially resolved z10z\sim10 candidate, remains at its high redshift, supported by deep \textit{Spitzer}/IRAC data, and also shows some evidence for an evolved stellar population. Even with the lensed, bright apparent magnitudes of these z8z \gtrsim 8 candidates (H = 26.1-27.8 AB mag), only the \textit{James Webb Space Telescope} will be able further confirm the presence of evolved stellar populations early in the universe.Comment: 8 pages, 3 figures, 2 table

    Strong Lensing by Galaxy Clusters

    Full text link
    Galaxy clusters as gravitational lenses play a unique role in astrophysics and cosmology: they permit mapping the dark matter distribution on a range of scales; they reveal the properties of high and intermediate redshift background galaxies that would otherwise be unreachable with telescopes; they constrain the particle nature of dark matter and are a powerful probe of global cosmological parameters, like the Hubble constant. In this review we summarize the current status of cluster lensing observations and the insights they provide, and offer a glimpse into the capabilities that ongoing, and the upcoming next generation of telescopes and surveys will deliver. While many open questions remain, cluster lensing promises to remain at the forefront of discoveries in astrophysics and cosmology.Comment: 57 pages, 13 figures, Accepted for publication in Space Science Reviews, Topical Collection 'Strong Gravitational Lensing', eds. J. Wambsganss et a
    corecore