19 research outputs found
Powers of Hamilton cycles of high discrepancy are unavoidable
The P\'osa-Seymour conjecture asserts that every graph on vertices with
minimum degree at least contains the power of a
Hamilton cycle. Koml\'os, S\'ark\"ozy and Szemer\'edi famously proved the
conjecture for large The notion of discrepancy appears in many areas of
mathematics, including graph theory. In this setting, a graph is given
along with a -coloring of its edges. One is then asked to find in a copy
of a given subgraph with a large discrepancy, i.e., with many more edges in one
of the colors. For we determine the minimum degree threshold needed
to find the power of a Hamilton cycle of large discrepancy, answering
a question posed by Balogh, Csaba, Pluh\'ar and Treglown. Notably, for this threshold approximately matches the minimum degree requirement of the
P\'osa-Seymour conjecture
Weighted Tur\'an theorems with applications to Ramsey-Tur\'an type of problems
We study extensions of Tur\'an Theorem in edge-weighted settings. A
particular case of interest is when constraints on the weight of an edge come
from the order of the largest clique containing it. These problems are
motivated by Ramsey-Tur\'an type problems. Some of our proofs are based on the
method of graph Lagrangians, while the other proofs use flag algebras. Using
these results, we prove several new upper bounds on the Ramsey-Tur\'an density
of cliques. Other applications of our results are in a recent paper of Balogh,
Chen, McCourt and Murley.Comment: 19 pages, 10 figure
Effective Bounds for Induced Size-Ramsey Numbers of Cycles
The induced size-Ramsey number r^indk(H) of a graph H is the smallest number of edges a (host) graph G can have such that for any k-coloring of its edges, there exists a monochromatic copy of H which is an induced subgraph of G. In 1995, in their seminal paper, Haxell, Kohayakawa and Åuczak showed that for cycles, these numbers are linear for any constant number of colours, i.e., r^indk(Cn)ā¤Cn for some C=C(k). The constant C comes from the use of the regularity lemma, and has a tower type dependence on k. In this paper we significantly improve these bounds, showing that r^indk(Cn)ā¤O(k102)n when n is even, thus obtaining only a polynomial dependence of C on k. We also prove r^indk(Cn)ā¤eO(klogk)n for odd n, which almost matches the lower bound of eĪ©(k)n. Finally, we show that the ordinary (non-induced) size-Ramsey number satisfies r^k(Cn)=eO(k)n for odd n. This substantially improves the best previous result of eO(k2)n, and is best possible, up to the implied constant in the exponent. To achieve our results, we present a new host graph construction which, roughly speaking, reduces our task to finding a cycle of approximate given length in a graph with local sparsity
Ramsey numbers of hypergraphs of a given size
The -color Ramsey number of a -uniform hypergraph is the minimum
integer such that any -coloring of the complete -uniform hypergraph
on vertices contains a monochromatic copy of . The study of these
numbers is one of the central topics in Combinatorics. In 1973, Erd\H{o}s and
Graham asked to maximize the Ramsey number of a graph as a function of the
number of its edges. Motivated by this problem, we study the analogous question
for hypergaphs. For fixed and we prove that the largest
possible -color Ramsey number of a -uniform hypergraph with edges is
at most where denotes the tower
function. We also present a construction showing that this bound is tight for
. This resolves a problem by Conlon, Fox and Sudakov. They previously
proved the upper bound for and the lower bound for . Although
in the graph case the tightness follows simply by considering a clique of
appropriate size, for higher uniformities the construction is rather involved
and is obtained by using paths in expander graphs
Large cliques or co-cliques in hypergraphs with forbidden order-size pairs
The well-known Erd\H{o}s-Hajnal conjecture states that for any graph ,
there exists such that every -vertex graph that contains no
induced copy of has a homogeneous set of size at least . We
consider a variant of the Erd\H{o}s-Hajnal problem for hypergraphs where we
forbid a family of hypergraphs described by their orders and sizes. For graphs,
we observe that if we forbid induced subgraphs on vertices and edges
for any positive and , then we obtain large
homogeneous sets. For triple systems, in the first nontrivial case , for
every , we give bounds on the minimum size of a
homogeneous set in a triple system where the number of edges spanned by every
four vertices is not in . In most cases the bounds are essentially tight. We
also determine, for all , whether the growth rate is polynomial or
polylogarithmic. Some open problems remain.Comment: A preliminary version of this manuscript appeared as arXiv:2303.0957
Large cliques or cocliques in hypergraphs with forbidden order-size pairs
The well-known ErdÅs-Hajnal conjecture states that for any graph , there exists such that every -vertex graph that contains no induced copy of has a homogeneous set of size at least . We consider a variant of the ErdÅs-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on vertices and edges for any positive and , then we obtain large homogeneous sets. For triple systems, in the first nontrivial case , for every , we give bounds on the minimum size of a homogeneous set in a triple system where the number of edges spanned by every four vertices is not in . In most cases the bounds are essentially tight. We also determine, for all , whether the growth rate is polynomial or polylogarithmic. Some open problems remain
Zbornik I. skupa hrvatske ranokrÅ”Äanske arheologije (HRRANA)
Episkopalno srediÅ”te, tri slavne nekropole Salone i Eufrazijeva bazilika u PoreÄu su najpoznatiji ranokrÅ”Äanski lokaliteti u Hrvatskoj. Oni, meÄutim, nisu i jedini ā uz njih su pronaÄeni brojni drugi, ne manje važni, ranokrÅ”Äanski objekti, crkve, nekropole i pokretni nalazi. O njihovom znaÄaju govori i Äinjenica da je viÅ”e njih relevantno i u meÄunarodnom istraživanju odreÄenih arheoloÅ”kih tema. K tomu, nakon gotovo stoljeÄa i pol arheoloÅ”kih iskopavanja, znanost uvijek iznova dolazi do novih otkriÄa. Takva poticajna situacija potaknula je znanstvenike sa Katedre za antiÄku provincijalnu i ranokrÅ”Äansku arheologiju Odsjeka za arheologiju Filozofskog fakulteta u Zagrebu na organizaciju prvog nacionalnog ranokrÅ”Äanskog arheoloÅ”kog skupa. Slijedom toga je u Zagrebu od 15. do 17. ožujka 2018. održan prvi hrvatski skup ranokrÅ”Äanske arheologije. Prvi cilj skupa, Äiji akronim po poÄetnim slovima naslova glasi HRRANA, je bio prezentiranje aktualnog stanja, i možebitno unaprjeÄivanje, te važne znanstvene discipline. Objavom ovog zbornika radova nastoji se promovirati ne samo hrvatske ranokrÅ”Äanske lokalitete, spomenike, arhitekturu, krajobraze, ikonografiju, epigrafiju i recentna arheoloÅ”ka istraživanja, nego i uputiti na razliÄite istraživaÄke i metodoloÅ”ke probleme u istraživanju ranokrÅ”Äanske arheologije u Hrvatskoj kroz rasprave, ispitivanja, znanstvena i praktiÄna pitanja.Episkopalno srediÅ”te, tri slavne nekropole Salone i Eufrazijeva bazilika u PoreÄu su najpoznatiji ranokrÅ”Äanski lokaliteti u Hrvatskoj. Oni, meÄutim, nisu i jedini ā uz njih su pronaÄeni brojni drugi, ne manje važni, ranokrÅ”Äanski objekti, crkve, nekropole i pokretni nalazi. O njihovom znaÄaju govori i Äinjenica da je viÅ”e njih relevantno i u meÄunarodnom istraživanju odreÄenih arheoloÅ”kih tema. K tomu, nakon gotovo stoljeÄa i pol arheoloÅ”kih iskopavanja, znanost uvijek iznova dolazi do novih otkriÄa. Takva poticajna situacija potaknula je znanstvenike sa Katedre za antiÄku provincijalnu i ranokrÅ”Äansku arheologiju Odsjeka za arheologiju Filozofskog fakulteta u Zagrebu na organizaciju prvog nacionalnog ranokrÅ”Äanskog arheoloÅ”kog skupa. Slijedom toga je u Zagrebu od 15. do 17. ožujka 2018. održan prvi hrvatski skup ranokrÅ”Äanske arheologije. Prvi cilj skupa, Äiji akronim po poÄetnim slovima naslova glasi HRRANA, je bio prezentiranje aktualnog stanja, i možebitno unaprjeÄivanje, te važne znanstvene discipline. Objavom ovog zbornika radova nastoji se promovirati ne samo hrvatske ranokrÅ”Äanske lokalitete, spomenike, arhitekturu, krajobraze, ikonografiju, epigrafiju i recentna arheoloÅ”ka istraživanja, nego i uputiti na razliÄite istraživaÄke i metodoloÅ”ke probleme u istraživanju ranokrÅ”Äanske arheologije u Hrvatskoj kroz rasprave, ispitivanja, znanstvena i praktiÄna pitanja