6 research outputs found

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Fetal programming and eating disorder risk

    No full text
    ‱The fetal environment impacts anorexia and bulimia development later in life.‱Maternal malnutrition and stress are key factors influencing the fetal environment.‱Maternal and fetal birth stressors and complications are associated with eating disorder risk.‱Translation of research results focuses on preventative measures of maternal stressors. Fetal programming describes the process by which environmental stimuli impact fetal development to influence disease development later in life. Our analysis summarizes evidence for the role of fetal programming in eating disorder etiology through review of studies demonstrating specific obstetric complications and later eating risk of anorexia or bulimia. Using Pubmed, we found thirteen studies investigating obstetric factors and eating disorder risk published between 1999 and 2016. We then discuss modifiable maternal risk factors, including nutrition and stress, that influence anorexia or bulimia risk of their offspring. Translation of these findings applies to preventative strategies by health organizations and physicians to provide optimal health for mothers and their children to prevent development of medical and psychiatric illnesses

    Implementing stakeholder engagement to explore alternative models of consent: An example from the PREP-IT trials

    No full text
    Introduction: Cluster randomized crossover trials are often faced with a dilemma when selecting an optimal model of consent, as the traditional model of obtaining informed consent from participant's before initiating any trial related activities may not be suitable. We describe our experience of engaging patient advisors to identify an optimal model of consent for the PREP-IT trials. This paper also examines surrogate measures of success for the selected model of consent. Methods: The PREP-IT program consists of two multi-center cluster randomized crossover trials that engaged patient advisors to determine an optimal model of consent. Patient advisors and stakeholders met regularly and reached consensus on decisions related to the trial design including the model for consent. Patient advisors provided valuable insight on how key decisions on trial design and conduct would be received by participants and the impact these decisions will have. Results: Patient advisors, together with stakeholders, reviewed the pros and cons and the requirements for the traditional model of consent, deferred consent, and waiver of consent. Collectively, they agreed upon a deferred consent model, in which patients may be approached for consent after their fracture surgery and prior to data collection. The consent rate in PREP-IT is 80.7%, and 0.67% of participants have withdrawn consent for participation. Discussion: Involvement of patient advisors in the development of an optimal model of consent has been successful. Engagement of patient advisors is recommended for other large trials where the traditional model of consent may not be optimal
    corecore