431 research outputs found
Hole Spin Mixing in InAs Quantum Dot Molecules
Holes confined in single InAs quantum dots have recently emerged as a
promising system for the storage or manipulation of quantum information. These
holes are often assumed to have only heavy-hole character and further assumed
to have no mixing between orthogonal heavy hole spin projections (in the
absence of a transverse magnetic field). The same assumption has been applied
to InAs quantum dot molecules formed by two stacked InAs quantum dots that are
coupled by coherent tunneling of the hole between the two dots. We present
experimental evidence of the existence of a hole spin mixing term obtained with
magneto-photoluminescence spectroscopy on such InAs quantum dot molecules. We
use a Luttinger spinor model to explain the physical origin of this hole spin
mixing term: misalignment of the dots along the stacking direction breaks the
angular symmetry and allows mixing through the light-hole component of the
spinor. We discuss how this novel spin mixing mechanism may offer new spin
manipulation opportunities that are unique to holes.Comment: 13 pages, 9 figure
Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs
We present photoluminescence studies of the molecular neutral
biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum
dot pairs. We tune either the hole or the electron levels of the two dots into
tunneling resonances. The spectra are described well within a few-level,
few-particle molecular model. Their properties can be modified broadly by an
electric field and by structural design, which makes them highly attractive for
controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments,
published
Fast spin rotations by optically controlled geometric phases in a quantum dot
We demonstrate optical control of the geometric phase acquired by one of the
spin states of an electron confined in a charge-tunable InAs quantum dot via
cyclic 2pi excitations of an optical transition in the dot. In the presence of
a constant in-plane magnetic field, these optically induced geometric phases
result in the effective rotation of the spin about the magnetic field axis and
manifest as phase shifts in the spin quantum beat signal generated by two
time-delayed circularly polarized optical pulses. The geometric phases
generated in this manner more generally perform the role of a spin phase gate,
proving potentially useful for quantum information applications.Comment: 4 pages, 3 figures, resubmitted to Physical Review Letter
Electrically tunable g-factors in quantum dot molecular spin states
We present a magneto-photoluminescence study of individual vertically stacked
InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied
electric field tunes the relative energies of the two dots, we observe a strong
resonant increase or decrease in the g-factors of different spin states that
have molecular wavefunctions distributed over both quantum dots. We propose a
phenomenological model for the change in g-factor based on resonant changes in
the amplitude of the wavefunction in the barrier due to the formation of
bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects
response to referee comment
Spin Fine Structure in Optically Excited Quantum Dot Molecules
The interaction between spins in coupled quantum dots is revealed in distinct
fine structure patterns in the measured optical spectra of InAs/GaAs double
quantum dot molecules containing zero, one, or two excess holes. The fine
structure is explained well in terms of a uniquely molecular interplay of spin
exchange interactions, Pauli exclusion and orbital tunneling. This knowledge is
critical for converting quantum dot molecule tunneling into a means of
optically coupling not just orbitals, but spins.Comment: 10 pages, 7 figures, added material, (published
Electrical control of optical orientation of neutral and negatively charged excitons in n-type semiconductor quantum well
We report a giant electric field induced increase of spin orientation of
excitons in n-type GaAs/AlGaAs quantum well. It correlates strongly with the
formation of negatively charged excitons (trions) in the photoluminescence
spectra. Under resonant excitation of neutral heavy-hole excitons, the
polarization of excitons and trions increases dramatically with electrical
injection of electrons within the narrow exciton-trion bias transition in the
PL spectra, implying a polarization sensitivity of 200 % per Volt. This effect
results from a very efficient trapping of neutral excitons by the quantum well
interfacial fluctuations (so-called "natural" quantum dots) containing resident
electrons.Comment: 18 pages, 4 figure
Controlling the nuclear polarization in quantum dots using optical pulses with a modest bandwidth
We show that detuned optical pulse trains with a modest spectral width can
polarize nuclear spins in InAs quantum dots. The pulse bandwidth is large
enough to excite a coherent superposition of both electron spin eigenstates in
these negatively charged dots but narrow enough to give partial spectral
selectivity between the eigenstates. The coherent precession of electron spin
states and periodic excitation focuses the nuclear spin distribution, producing
a discrete set of precession modes. The spectral selectivity generates a net
nuclear polarization, through a mechanism that relies on optical spin rotations
rather than electron spin relaxation.Comment: 7 pages, 7 figure
- …