348 research outputs found
Resonant and non-resonant Tunneling through a double barrier
An explicit expression is obtained for the phase-time corresponding to
tunneling of a (non-relativistic) particle through two rectangular barriers,
both in the case of resonant and in the case of non-resonant tunneling. It is
shown that the behavior of the transmission coefficient and of the tunneling
phase-time near a resonance is given by expressions with "Breit-Wigner type"
denominators. By contrast, it is shown that, when the tunneling probability is
low (but not negligible), the non-resonant tunneling time depends on the
barrier width and on the distance between the barriers only in a very weak
(exponentially decreasing) way: This can imply in various cases, as well-known,
the highly Superluminal tunneling associated with the so-called "generalized
Hartman Effect"; but we are now able to improve and modify the mathematical
description of such an effect, and to compare more in detail our results with
the experimental data for non-resonant tunneling of photons. Finally, as a
second example, the tunneling phase-time is calculated, and compared with the
available experimental results, in the case of the quantum-mechanical tunneling
of neutrons through two barrier-filters at the resonance energy of the set-up.Comment: replaced with some improvements in the text and in the references:
pdf (11 pages) produced from a source-file in Word; including one Figur
Electron propagation in crossed magnetic and electric fields
Laser-atom interaction can be an efficient mechanism for the production of
coherent electrons. We analyze the dynamics of monoenergetic electrons in the
presence of uniform, perpendicular magnetic and electric fields. The Green
function technique is used to derive analytic results for the field--induced
quantum mechanical drift motion of i) single electrons and ii) a dilute Fermi
gas of electrons. The method yields the drift current and, at the same time it
allows us to quantitatively establish the broadening of the (magnetic) Landau
levels due to the electric field: Level number k is split into k+1 sublevels
that render the th oscillator eigenstate in energy space. Adjacent Landau
levels will overlap if the electric field exceeds a critical strength. Our
observations are relevant for quantum Hall configurations whenever electric
field effects should be taken into account.Comment: 11 pages, 2 figures, submitte
Data needs for hyperspectral detection of algal bloom diversity across the globe.
A group of 38 experts specializing in hyperspectral remote-sensing methods for aquatic ecosystems attended an interactive Euromarine Foresight Workshop at the Flanders Marine Institute (VLIZ) in Ostend, Belgium, June 4–6, 2019. The objective of this workshop was to develop recommendations for comprehensive, efficient, and effective laboratory and field programs to supply data for development of algorithms and validation of hyperspectral satellite imagery for micro-, macro- and endosymbiotic algal characterization across the globe. The international group of researchers from Europe, Asia, Australia, and North and South America (see online Supplementary Materials) tackled how to develop global databases that merge hyperspectral optics and phytoplankton group composition to support the next generation of hyperspectral satellites for assessing biodiversity in the ocean and in food webs and for detecting water quality issues such as harmful algal blooms. Through stimulating discussions in breakout groups, the team formulated a host of diverse programmatic recommendations on topics such as how to better integrate optics into phytoplankton monitoring programs; approaches to validating phytoplankton composition with ocean color measurements and satellite imagery; new database specifications that match optical data with phytoplankton composition data; requirements for new instrumentation that can be implemented on floats, moorings, drones, and other platforms; and the development of international task forces.
Because in situ observations of phytoplankton biogeography and abundance are scarce, and many vast oceanic regions are too remote to be routinely monitored, satellite observations are required to fully comprehend the diversity of micro-, macro-, and endosymbiotic algae and any variability due to climate change. Ocean color remote sensing that provides regular synoptic monitoring of aquatic ecosystems is an excellent tool for assessing biodiversity and abundance of phytoplankton and algae in aquatic ecosystems. However, neither the spatial, temporal, nor spectral resolution of the current ocean color missions are sufficient to characterize phytoplankton community composition adequately. The near-daily overpasses from ocean color satellites are useful for detecting the presence of blooms, but the spatial resolution is often too coarse to assess the patchy distribution of blooms, and the multiband spectral resolution is generally insufficient to identify different types of phytoplankton from each other, even if progress has undeniably been achieved during the last two decades (e.g., IOCGG, 2014). Moreover, the methods developed for multichannel sensor use are often highly tuned to a region but are inaccurate when applied broadly.
New orbital imaging spectrometers are being developed that cover the full visible and near-infrared spectrum with a large number of narrow bands dubbed “hyperspectral” (e.g., TROPOMI, PRISMA, EnMAP, PACE, CHIME, SBG). Hyper-spectral methods have been explored for many years to assess phytoplankton groups and map seafloor habitats. However, the utility of hyperspectral imaging still needs to be demonstrated across diverse aquatic regimes. Aquatic applications of hyperspectral imagery have been limited by both the technology and the ability to validate products. Some of the past hyperspectral space-based sensors have suffered from calibration artifacts, low sensitivity in aquatic ecosystems (e.g., CHRIS, HICO), and very low spatial resolution (e.g., SCIAMACHY), but the next generation of sensors are planned to have high signal-to-noise ratio and improved performance over aquatic targets. Providing data to develop and validate hyperspectral approaches to characterize phytoplankton groups across the globe poses new challenges. Several recent studies have documented gaps that need to be filled in order to assess algal diversity across the globe (IOCCG, 2014; Mouw et al., 2015; Bracher et al., 2017), which promoted/inspired the formation of this workshop
Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic scattering processes: Software package SCIATRAN.
SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean–atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence.
In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments.
The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de
Ballistic matter waves with angular momentum: Exact solutions and applications
An alternative description of quantum scattering processes rests on
inhomogeneous terms amended to the Schroedinger equation. We detail the
structure of sources that give rise to multipole scattering waves of definite
angular momentum, and introduce pointlike multipole sources as their limiting
case. Partial wave theory is recovered for freely propagating particles. We
obtain novel results for ballistic scattering in an external uniform force
field, where we provide analytical solutions for both the scattering waves and
the integrated particle flux. Our theory directly applies to p-wave
photodetachment in an electric field. Furthermore, illustrating the effects of
extended sources, we predict some properties of vortex-bearing atom laser beams
outcoupled from a rotating Bose-Einstein condensate under the influence of
gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and
semiclassical theor
Characterisation of Gamma Herpesviruses in the Horse by PCR
AbstractA polymerase chain reaction (PCR) based on a combination of oligonucleotide primers selected using the octamer frequency disparity method with primers specific for EHV-5 (described by other authors) recognized all of a series of gamma herpesvirus field isolates. This PCR produced only three fragments: (1) one EHV-2-specific; (2) one EHV-5-specific; and (3) a fragment that occurred alone or in combination with the other two. Cloning and sequencing of four different isolates yielding only the last PCR product showed that this corresponds to a deletion/insertion mutant of EHV-2. The fact that this mutant was also plaque-purified from a culture producing all three PCR fragments demonstrated that the virus producing this fragment was distinct from the other two and that this specific DNA fragment was not an artefact due to PCR amplification. These data show that equine gamma herpesviruses are genetically more heterogeneous than previously assumed. The PCR failed to directly detect gamma herpesviruses from the DNA extracted from the same starting material used for the isolation of gamma herpesvirus by cocultivation with indicator cells. This demonstrates that the most reliable method for detection of equine gamma herpesviruses is the cocultivation with indicator cells
Partial Densities of States, Scattering Matrices, and Green's Functions
The response of an arbitrary scattering problem to quasi-static perturbations
in the scattering potential is naturally expressed in terms of a set of local
partial densities of states and a set of sensitivities each associated with one
element of the scattering matrix. We define the local partial densities of
states and the sensitivities in terms of functional derivatives of the
scattering matrix and discuss their relation to the Green's function. Certain
combinations of the local partial densities of states represent the injectivity
of a scattering channel into the system and the emissivity into a scattering
channel. It is shown that the injectivities and emissivities are simply related
to the absolute square of the scattering wave-function. We discuss also the
connection of the partial densities of states and the sensitivities to
characteristic times. We apply these concepts to a delta-barrier and to the
local Larmor clock.Comment: 13 pages (revtex), 4 figure
- …