40 research outputs found

    Spatial Binding Impairments in Visual Working Memory following Temporal Lobectomy

    Get PDF
    Disorders of the medial temporal lobe (MTL) adversely affect visual working memory (vWM) performance, including feature binding. It is unclear whether these impairments generalize across visual dimensions or are specifically spatial. To address this issue, we compared performance in two tasks of 13 epilepsy patients, who had undergone a temporal lobectomy, and 15 healthy controls. In the vWM task, participants recalled the color of one of two polygons, previously displayed side by side. At recall, a location or shape probe identified the target. In the perceptual task, participants estimated the centroid of three visible disks. Patients recalled the target color less accurately than healthy controls because they frequently swapped the nontarget with the target color. Moreover, healthy controls and right temporal lobectomy patients made more swap errors following shape than space probes. Left temporal lobectomy patients, showed the opposite pattern of errors instead. Patients and controls performed similarly in the perceptual task. We conclude that left MTL damage impairs spatial binding in vWM, and that this impairment does not reflect a perceptual or attentional deficit

    Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy:a resting state functional MRI study

    Get PDF
    Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cellular or genetic explanations for drug resistance. However, epilepsy is understood to be a network disorder and there is a growing body of literature suggesting altered topology of large-scale resting networks in people with epilepsy compared with controls. We hypothesize that network alterations may also play a role in seizure control. The aim of this study was to compare resting state functional network structure between well-controlled IGE (WC-IGE), drug resistant IGE (DR-IGE) and healthy controls. Thirty-three participants with IGE (10 with WC-IGE and 23 with DR-IGE) and 34 controls were included. Resting state functional MRI networks were constructed using the Functional Connectivity Toolbox (CONN). Global graph theoretic network measures of average node strength (an equivalent measure to mean degree in a network that is fully connected), node strength distribution variance, characteristic path length, average clustering coefficient, small-world index and average betweenness centrality were computed. Graphs were constructed separately for positively weighted connections and for absolute values. Individual nodal values of strength and betweenness centrality were also measured and 'hub nodes' were compared between groups. Outcome measures were assessed across the three groups and between both groups with IGE and controls. The IGE group as a whole had a higher average node strength, characteristic path length and average betweenness centrality. There were no clear differences between groups according to seizure control. Outcome metrics were sensitive to whether negatively correlated connections were included in network construction. There were no clear differences in the location of 'hub nodes' between groups. The results suggest that, irrespective of seizure control, IGE interictal network topology is more regular and has a higher global connectivity compared to controls, with no alteration in hub node locations. These alterations may produce a resting state network that is more vulnerable to transitioning to the seizure state. It is possible that the lack of apparent influence of seizure control on network topology is limited by challenges in classifying drug response. It is also demonstrated that network topological features are influenced by the sign of connectivity weights and therefore future methodological work is warranted to account for anticorrelations in graph theoretic studies

    Study protocol for a randomised pilot study of a computer-based, non-pharmacological cognitive intervention for motor slowing and motor fatigue in Parkinson’s disease

    Get PDF
    Abstract Background Parkinson’s disease (PD) is a chronic, neurodegenerative disorder affecting over 137,000 people in the UK and an estimated five million people worldwide. Treatment typically involves long-term dopaminergic therapy, which improves motor symptoms, but is associated with dose-limiting side effects. Developing effective complementary, non-pharmacological interventions is of considerable importance. This paper presents the protocol for a three-arm pilot study to test the implementation of computer-based cognitive training that aims to produce improvements or maintenance of motor slower and motor fatigue symptoms in people with PD. The primary objective is to assess recruitment success and usability of external data capture devices during the intervention. The secondary objectives are to obtain estimates of variance and effect size for changes in primary and secondary outcome measures to inform sample size calculations and study design for a larger scale trial. Methods The study aims to recruit between 40 and 60 adults with early- to middle-stage PD (Hoehn and Yahr 1–3) from National Health Service (NHS) outpatients’ clinics and support groups across North Wales, UK. Participants will be randomised to receive training over five sessions in either a spatial grid navigation task, a sequential subtraction task or a spatial memory task. Patient-centred outcome measures will include motor examination scores from part 3 of the UPDRS-III and data from movement kinematic and finger tapping tasks. Discussion The results of this study will provide information regarding the feasibility of conducting a larger randomised control trial of non-pharmacological cognitive interventions of motor symptoms in PD. Trial registration ISRCTN, ISRCTN12565492. Registered 4 April 2018—retrospectively registered, in accordance with the WHO Trial Registration Data Set

    Probabilistic mapping of thalamic nuclei and thalamocortical functional connectivity in idiopathic generalised epilepsy

    Get PDF
    It is well established that abnormal thalamocortical systems play an important role in the generation and maintenance of primary generalised seizures. However, it is currently unknown which thalamic nuclei and how nuclear‐specific thalamocortical functional connectivity are differentially impacted in patients with medically refractory and non‐refractory idiopathic generalised epilepsy (IGE). In the present study, we performed structural and resting‐state functional magnetic resonance imaging (MRI) in patients with refractory and non‐refractory IGE, segmented the thalamus into constituent nuclear regions using a probabilistic MRI segmentation method and determined thalamocortical functional connectivity using seed‐to‐voxel connectivity analyses. We report significant volume reduction of the left and right anterior thalamic nuclei only in patients with refractory IGE. Compared to healthy controls, patients with refractory and non‐refractory IGE had significant alterations of functional connectivity between the centromedian nucleus and cortex, but only patients with refractory IGE had altered cortical connectivity with the ventral lateral nuclear group. Patients with refractory IGE had significantly increased functional connectivity between the left and right ventral lateral posterior nuclei and cortical regions compared to patients with non‐refractory IGE. Cortical effects were predominantly located in the frontal lobe. Atrophy of the anterior thalamic nuclei and resting‐state functional hyperconnectivity between ventral lateral nuclei and cerebral cortex may be imaging markers of pharmacoresistance in patients with IGE. These structural and functional abnormalities fit well with the known importance of thalamocortical systems in the generation and maintenance of primary generalised seizures, and the increasing recognition of the importance of limbic pathways in IGE

    Midbrain structure volume, estimated myelin and functional connectivity in idiopathic generalised epilepsy

    Get PDF
    BackgroundStructural and functional neuroimaging studies often overlook lower basal ganglia structures located in and adjacent to the midbrain due to poor contrast on clinically acquired T1-weighted scans. Here, we acquired T1-weighted, T2-weighted, and resting-state fMRI scans to investigate differences in volume, estimated myelin content and functional connectivity of the substantia nigra (SN), subthalamic nuclei (SubTN) and red nuclei (RN) of the midbrain in IGE.MethodsThirty-three patients with IGE (23 refractory, 10 non-refractory) and 39 age and sex-matched healthy controls underwent MR imaging. Midbrain structures were automatically segmented from T2-weighted images and structural volumes were calculated. The estimated myelin content for each structure was determined using a T1-weighted/T2-weighted ratio method. Resting-state functional connectivity analysis of midbrain structures (seed-based) was performed using the CONN toolbox.ResultsAn increased volume of the right RN was found in IGE and structural volumes of the right SubTN differed between patients with non-refractory and refractory IGE. However, no volume findings survived corrections for multiple comparisons. No myelin alterations of midbrain structures were found for any subject groups. We found functional connectivity alterations including significantly decreased connectivity between the left SN and the thalamus and significantly increased connectivity between the right SubTN and the superior frontal gyrus in IGE.ConclusionsWe report volumetric and functional connectivity alterations of the midbrain in patients with IGE. We postulate that potential increases in structural volumes are due to increased iron deposition that impacts T2-weighted contrast. These findings are consistent with previous studies demonstrating pathophysiological abnormalities of the lower basal ganglia in animal models of generalised epilepsy

    Does transcranial direct current stimulation to prefrontal cortex affect mood and emotional memory retrieval in healthy individuals?

    Get PDF
    Studies using transcranial direct current stimulation (tDCS) of prefrontal cortex to improve symptoms of depression have had mixed results. We examined whether using tDCS to change the balance of activity between left and right dorsolateral prefrontal cortex (DLPFC) can alter mood and memory retrieval of emotional material in healthy volunteers. Participants memorised emotional images, then tDCS was applied bilaterally to DLPFC while they performed a stimulus-response compatibility task. Participants were then presented with a set of images for memory retrieval. Questionnaires to examine mood and motivational state were administered at the beginning and end of each session. Exploratory data analyses showed that the polarity of tDCS to DLPFC influenced performance on a stimulus-response compatibility task and this effect was dependent on participants' prior motivational state. However, tDCS polarity had no effect on the speed or accuracy of memory retrieval of emotional images and did not influence positive or negative affect. These findings suggest that the balance of activity between left and right DLPFC does not play a critical role in the mood state of healthy individuals. We suggest that the efficacy of prefrontal tDCS depends on the initial activation state of neurons and future work should take this into account. © 2014 Morgan et al

    On the posterior parietal cortex and saccadic eye movements

    No full text
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 1991.Includes bibliographical references (p. 329-368).by Robert Martyn Bracewell.Ph.D
    corecore