28 research outputs found

    Computational complexity of ÎĽ calculation

    Get PDF
    The structured singular value ÎĽ measures the robustness of uncertain systems. Numerous researchers over the last decade have worked on developing efficient methods for computing ÎĽ. This paper considers the complexity of calculating ÎĽ with general mixed real/complex uncertainty in the framework of combinatorial complexity theory. In particular, it is proved that the ÎĽ recognition problem with either pure real or mixed real/complex uncertainty is NP-hard. This strongly suggests that it is futile to pursue exact methods for calculating ÎĽ of general systems with pure real or mixed uncertainty for other than small problems

    Pervaporation of Emulsion Droplets for the Templated Assembly of Spherical Particles: A Population Balance Model

    Get PDF
    The emulsion droplet solvent evaporation method is used in the preparation of spherical particles, which form due to processes such as the clustering of nanocrystals or precipitation of polymers as the volume of solvent in the droplets decreases. A population balance model is presented to describe this transport of solvent from nanocrystal-or polymerladen droplets in an emulsion that flows through a pervaporation unit. The solvent transport and lateral migration of droplets was simulated using a high-resolution finite-volume algorithm, which provided a smooth solution with secondorder accuracy. Concentration gradients in the continuous phase become prominent when the resistance to solvent transport in the continuous phase dominates that in the membrane. In contrast, with the membrane resistance controlling the overall transport rate, a lumped capacitance assumption can be made and a simpler plug flow model would be sufficient. The simulations also indicate that the particle-size distributions are generally bimodal, and are broader for low dispersed-phase volume fractions and very low-solvent solubilities. Furthermore, the distributions show that radial diffusion of the particles occurs to a significant degree. Such simulations offer insight into how the solvent is removed from emulsion droplets as they flow down a pervaporation fiber and should be useful in the design of pervaporation systems for that purpose

    Model Predictive Control of an Integrated Continuous Pharmaceutical Manufacturing Pilot Plant

    Full text link
    This paper considers the model predictive control (MPC) of critical quality attributes (CQAs) of products in an end-to-end continuous pharmaceutical manufacturing pilot plant, which was designed and constructed at the Novartis-MIT Center for Continuous Manufacturing. Feedback control is crucial for achieving the stringent regulatory requirements on CQAs of pharmaceutical products in the presence of process uncertainties and disturbances. To this end, a key challenge arises from complex plant-wide dynamics of the integrated process units in a continuous pharmaceutical process, that is, dynamical interactions between several process units. This paper presents two plant-wide MPC designs for the end-to-end continuous pharmaceutical manufacturing pilot plant using the quadratic dynamic matrix control algorithm. The plant-wide MPC designs are based on different modeling approaches - subspace identification and linearization of nonlinear differential-algebraic equations that yield, respectively, linear low-dimensional and high-dimensional state-space models for the plant-wide dynamics. The closed-loop performance of the plant-wide MPC designs is evaluated using a nonlinear plant simulator equipped with a stabilizing control layer. The closed-loop simulation results demonstrate that the plant-wide MPC systems can facilitate effective regulation of CQAs and flexible process operation in the presence of uncertainties in reaction kinetics, persistent drifts in efficiency of filtration units, temporary disturbances in purity of intermediate compounds, and set point changes. The plant-wide MPC allows for incorporating quality-by-design considerations into the control problem through input and output constraints to ensure regulatory compliant process operation

    ngVLA Key Science Goal 5 Understanding the Formation and Evolution of Black Holes in the Era of Multi-Messenger Astronomy

    Get PDF
    The next-generation Very Large Array (ngVLA) will be a powerful telescope for finding and studying black holes across the entire mass range. High-resolution imaging abilities will allow the separation of low-luminosity black holes in the local Universe from background sources, thereby providing critical constraints on the mass function, formation, and growth of black holes. Its combination of sensitivity and angular resolution will provide new constraints on the physics of black hole accretion and jet formation. Combined with facilities across the spectrum and gravitational wave observatories, the ngVLA will provide crucial constraints on the interaction of black holes with their environments, with specific implications for the relationship between evolution of galaxies and the emission of gravitational waves from in-spiraling supermassive black holes and potential implications for stellar mass and intermediate mass black holes. The ngVLA will identify the radio counterparts to transient sources discovered by electromagnetic, gravitational wave, and neutrino observatories, and its high-resolution, fast-mapping capabilities will make it the preferred instrument to pinpoint electromagnetic counterparts to events such as supermassive black hole mergers. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

    Input Design for Large-Scale Sheet and Film Processes

    No full text

    Tunable protein crystal size distribution <i>via</i> continuous slug-flow crystallization with spatially varying temperature

    No full text
    Under appropriate buffer and pH conditions, the magnitude and dispersion of the product protein crystals were reproducibly manipulated by controlling the spatial temperature along the tube in a continuous tubular crystallizer.</jats:p
    corecore