1,226 research outputs found

    Comment on ``Damping of energetic gluons and quarks in high-temperature QCD''

    Full text link
    Burgess and Marini have recently pointed out that the leading contribution to the damping rate of energetic gluons and quarks in the QCD plasma, given by γ=cg2ln⁥(1/g)T\gamma=c g^2\ln(1/g)T, can be obtained by simple arguments obviating the need of a fully resummed perturbation theory as developed by Braaten and Pisarski. Their calculation confirmed previous results of Braaten and Pisarski, but contradicted those proposed by Lebedev and Smilga. While agreeing with the general considerations made by Burgess and Marini, I correct their actual calculation of the damping rates, which is based on a wrong expression for the static limit of the resummed gluon propagator. The effect of this, however, turns out to be cancelled fortuitously by another mistake, so as to leave all of their conclusions unchanged. I also verify the gauge independence of the results, which in the corrected calculation arises in a less obvious manner.Comment: 5 page

    Damping rate of plasmons and photons in a degenerate nonrelativistic plasma

    Full text link
    A calculation is presented of the plasmon and photon damping rates in a dense nonrelativistic plasma at zero temperature, following the resummation program of Braaten-Pisarski. At small soft momentum kk, the damping is dominated by 3→23 \to 2 scattering processes corresponding to double longitudinal Landau damping. The dampings are proportional to (α/vF)3/2k2/m(\alpha/v_{F})^{3/2} k^2/m, where vFv_{F} is the Fermi velocity.Comment: 9 pages, 2 figure

    Collective fermionic excitations in systems with a large chemical potential

    Get PDF
    We study fermionic excitations in a cold ultrarelativistic plasma. We construct explicitly the quantum states associated with the two branches which develop in the excitation spectrum as the chemical potential is raised. The collective nature of the long wavelength excitations is clearly exhibited. Email contact: [email protected]: Saclay-T93/018 Email: [email protected]

    Damping rates for moving particles in hot QCD

    Full text link
    Using a program of perturbative resummation I compute the damping rates for fields at nonzero spatial momentum to leading order in weak coupling in hot QCDQCD. Sum rules for spectral densities are used to simplify the calculations. For massless fields the damping rate has an apparent logarithmic divergence in the infrared limit, which is cut off by the screening of static magnetic fields (``magnetic mass''). This demonstrates how at high temperature even perturbative quantities are sensitive to nonperturbative phenomenon.Comment: LaTeX file, 24 pages, BNL-P-1/92 (December, 1992

    The Free Energy of High Temperature QED to Order e5e^{5} From Effective Field Theory

    Full text link
    Massless quantum electrodynamics is studied at high temperature and zero chemical potential. We compute the Debye screening mass to order e4e^{4} and the free energy to order e5e^{5}} by an effective field theory approach, recently developed by Braaten and Nieto. Our results are in agreement with calculations done in resummed perturbation theory. This method makes it possible to separate contributions to the free energy from different momentum scales (order TT and eTeT) and provides an economical alternative to computations in the full theory which involves the dressing of internal propagators.Comment: 10 pages Latex, 6 figure

    General structure of the graviton self-energy

    Get PDF
    The graviton self-energy at finite temperature depends on fourteen structure functions. We show that, in the absence of tadpoles, the gauge invariance of the effective action imposes three non-linear relations among these functions. The consequences of such constraints, which must be satisfied by the thermal graviton self-energy to all orders, are explicitly verified in general linear gauges to one loop order.Comment: 4 pages, minor corrections of typo

    Hadronic Production of S-wave and P-wave Charmed Beauty Mesons via Heavy Quark Fragmentation

    Get PDF
    At hadron colliders the dominant production mechanism of (bˉc)(\bar bc) mesons with large transverse momentum is due to parton fragmentation. We compute the rates and transverse momentum spectra for production of S-wave and P-wave (bˉc)(\bar b c) mesons at the Tevatron via the direct fragmentation of the bottom antiquark as well as the Altarelli-Parisi induced gluon fragmentation. Since all the radially and orbitally excited (bˉc)(\bar b c) mesons below the BDBD flavor threshold will cascade into the pseudoscalar ground state BcB_c through electromagnetic and/or hadronic transitions, they all contribute to the inclusive production of BcB_c. The contributions of the excited S-wave and P-wave states to the inclusive production of BcB_c are 58 and 23\%, respectively, and hence significant.Comment: Changes are made in the Discussio

    Semiclassical Corrections to a Static Bose-Einstein Condensate at Zero Temperature

    Full text link
    In the mean-field approximation, a trapped Bose-Einstein condensate at zero temperature is described by the Gross-Pitaevskii equation for the condensate, or equivalently, by the hydrodynamic equations for the number density and the current density. These equations receive corrections from quantum field fluctuations around the mean field. We calculate the semiclassical corrections to these equations for a general time-independent state of the condensate, extending previous work to include vortex states as well as the ground state. In the Thomas-Fermi limit, the semiclassical corrections can be taken into account by adding a local correction term to the Gross-Pitaevskii equation. At second order in the Thomas-Fermi expansion, the semiclassical corrections can be taken into account by adding local correction terms to the hydrodynamic equations

    Color plasma oscillation in strangelets

    Get PDF
    The dispersion relation and damping rate of longitudinal color plasmons in finite strange quark matter (strangelets) are evaluated in the limits of weak coupling, low temperature, and long wavelength. The property of the QCD vacuum surrounding a strangelet makes the frequency of the plasmons nearly the same as the color plasma frequency of bulk matter. The plasmons are damped by their coupling with individual excitations of particle-hole pairs of quarks, of which the energy levels are discretized by the boundary. For strangelets of macroscopic size, the lifetime of the plasmons is found to be proportional to the size, as in the case of the usual plasma oscillations in metal nanoparticles.Comment: 9 pages (REVTeX), 2 Postscript figures, to be published in Phys. Rev.

    Helicity Probabilities For Heavy Quark Fragmentation Into Excited Mesons

    Get PDF
    In the fragmentation of a heavy quark into a heavy meson whose light degrees of freedom have angular momentum 3/23/2, all the helicity probabilities are completely determined in the heavy quark limit up to a single probability w3/2w_{3/2}. We point out that this probability depends on the longitudinal momentum fraction zz of the meson and on its transverse momentum p⊄p_\bot relative to the jet axis. We calculate w3/2w_{3/2} as a function of scaling variables corresponding to zz and p⊄p_\bot for the heavy quark limit of the perturbative QCD fragmentation functions for bb quark to fragment into (bcˉ)(b \bar c) mesons. In this model, the light degrees of freedom prefer to have their angular momentum aligned transverse to, rather than along, the jet axis. Implications for the production of excited heavy mesons, like D∗∗D^{**} and B∗∗B^{**}, are discussed.Comment: 10 pages, Latex file plus 3 figures with postscript files appended at the en
    • 

    corecore