57 research outputs found

    Broadside Pattern Correction Techniques for Conformal Antenna Arrays

    Get PDF
    Phase compensation techniques based on projection method and convex optimization (phase correction only) for comparing the maximum gain of a phase-compensated conformal antenna array have been discussed. In particular, these techniques are validated with conformal phased array antenna attached to a cylindrical-shaped surface with various radii of curvatures. These phase compensation techniques are used to correct the broadside radiation pattern. It is shown that the maximum broadside gain compensated is still less than the gain of a linear flat array for any surface deformation. This fundamental maximum compensated gain limitations of the phase compensation techniques can be used by a designer to predict the maximum broadside obtainable theoretical gain on a conformal antenna array for a particular deformed surface

    Eight-Element Compact UWB-MIMO/Diversity Antenna with WLAN Band Rejection for 3G/4G/5G Communications

    Get PDF
    An eight element, compact Ultra Wideband-Multiple Input Multiple Output (UWB-MIMO) antenna capable of providing high data rates for future Fifth Generation (5G) terminal equipments along with the provision of necessary bandwidth for Third Generation (3G) and Fourth Generation (4G) communications that accomplishes band rejection from 4.85 to 6.35 GHz by deploying a Inductor Capacitor (LC) stub on the ground plane is presented. The incorporated stub also provides flexibility to reject any selected band as well as bandwidth control. The orthogonal placement of the printed monopoles permits polarization diversity and provides high isolation. In the proposed eight element UWB-MIMO/diversity antenna, monopole pair 3-4 are 180o mirrored transform of monopole pair 1-2 which lie on the opposite corners of a planar 50 x 50 mm2 substrate. Four additional monopoles are then placed perpendicularly to the same board leading to a total size of 50 x 50 x 25 mm3 only. The simulated results are validated by comparing the measurements of a fabricated prototype. It was concluded that the design meets the target specifications over the entire bandwidth of 2 to 12 GHz with a reflection coefficient better than -10 dB (except the rejected band), isolation more than 17 dB, low envelope correlation, low gain variation, stable radiation pattern, and strong rejection of the signals in the Wireless Local Area Network (WLAN) band. Overall, compact and reduced complexity of the proposed eight element architecture, strengthens its practical viability for the diversity applications in future 5G terminal equipments amongst other MIMO antennas designs present in the literature.Comment: 25 page

    Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines

    Get PDF
    An ultra-compact dual-polarised ultra-wideband multi-input multi-output antenna made with a single-shared-radiating element and two meandered feeding lines are proposed. Miniaturisation is achieved by using a combination of techniques, including a resonant stub connected to the ground through which shorts the excessive coupled energy before it reaches the other port and minimises coupling, slots etched in the radiator that also help minimise mutual coupling, while the meandered lines allow to bring the antenna closer to the greatly reduce the overall size of the antenna. Slots etched in the radiator and the use of a stub connected to the ground through, help to minimise the mutual coupling. The formation of orthogonal surface currents provides the necessary dual polarisation. Simulated and measured results demonstrate the wideband impedance matching, low mutual coupling and low envelope correlation coefficient. This antenna has an extremely compact size (22 7 24.3 mm2, including the ground plane) that makes it an excellent candidate for portable and handheld devices. \ua9 The Institution of Engineering and Technology

    Ultra-compact reconfigurable band reject uwb MIMO antenna with four radiators

    Get PDF
    A compact reconfigurable UWB MIMO antenna with four radiators that accomplish on-demand band rejection from 4.9 to 6.3 GHz is presented. An LC stub is connected to the ground plane by activating the PIN diode for each radiator. Two radiators are placed perpendicular to each other to exploit the polarization diversity on a compact 25 × 50 mm 2 FR4 laminate. Two additional radiators are then fixed obliquely on the same laminate (without increasing size) in angular configuration at ±45° perpendicular to the first two planar radiators still exploiting polarization diversity. The design is validated by prototyping and comparing the results with the simulated ones. On demand band rejection through the use of PIN diodes, wide impedance matching (2–12 GHz), high isolation amongst the radiators, compactness achieved by angular placement of the radiators, low gain variation over the entire bandwidth, band rejection control achieved by adjusting the gap between stub and ground plane, and low TARC values makes the proposed design very suitable for commercial handheld devices (i.e., Huawei E5785 and Netgear 815S housings). The proposed configuration of the UWB MIMO radiators has been investigated first time as per authors’ knowledge. ©2020 keywords: band rejected; envelope correlation co-efficient; four element MIMO; polarization diversity; ultra-wideband multiple input multiple outputEU H2020 Marie Skłodowska-Curie Individual Fellowship ViSionRF (grant no. 840854)COMSATS Research Grant Program (project no. 16-63/CGRP/CUI/ISB/18/847

    A Metamaterial-Based Series Connected Rectangular Patch Antenna Array for UHF RFID Readers

    Get PDF
    Abstract-In this paper, a new metamaterial-based printed antenna for UHF Radio Frequency Identification (RFID) Readers is presented. This antenna is designed such that several can be connected in series to provide local RFID coverage. In this work, simulation and measurements are shown to agree very well and that confined UHF communication can be achieved with this antenna. Furthermore, the geometry of the new metamaterialbased UHF RFID antenna is altered and the resonant frequency is computed using simulations. It is shown that by varying certain geometrical features of the array, the operating frequency can be increased and decreased in a predictable manner

    A Compact Dual-Band Bow-Tie Slot Antenna for 900-MHz and 2400-MHz ISM Bands

    Get PDF
    Abstract-In this letter, the overall size of a dual-band bow-tie slot antenna is reduced by modifying the design of the radiating slot and by extending the feeding coplanar transmission line. In particular, it is shown that by sweeping and rounding the edges of the radiating slots and by extending and terminating the feeding coplanar transmission line with a short circuit, the overall size of the antenna layout can be reduced by 47%. A dual-band prototype antenna is manufactured, and measured results are shown to compare very well with simulated values from two different commercial software packages. This letter presents two new techniques that are beneficial for reducing the overall size of a bow-tie slot antenna
    corecore