321 research outputs found

    Protection against Nitric Oxide-Induced Apoptosis in Rat Mesangial Cells Demands Mitogen-Activated Protein Kinases and Reduced Glutathione

    Get PDF
    ABSTRACT Inflammatory diseases such as proliferative glomerulonephritis are associated with the production of nitric oxide (NO), which can initiate apoptotic/necrotic cell death. We studied the role of the p42/44 mitogen-activated protein kinases (MAPKs) and c-Jun N-terminal kinases1/2 (JNK1/2) in NO-evoked cytotoxicity in rat mesangial cells (MC). The NO donor S-nitrosoglutathione time-and concentration-dependently promoted apoptotic cell death as detected by JNK1/2 and caspase-3 activation as well as DNA fragmentation. By using Ro 318220, a JNK1/2 activator, we established a correlation between apoptosis and JNK1/2 activation. Apoptosis is antagonized by the addition of fetal calf serum or the simultaneous generation of NO and superoxide (O 2 Ϫ ), another biological inflammatory mediator. Fetal calf serum-induced protection required p42/44 MAPK activation as inhibition of the p42/44 MAPK pathway by the MAPK kinase-1 inhibitor PD 98059 attenuated MC protection. In contrast, cytoprotection by NO/O 2 Ϫ cogeneration demanded reduced glutathione but was p42/44 MAPK unrelated. Depletion of glutathione reversed NO/O 2 Ϫ -evoked survival to cell destruction and reinstalled JNK1/2 activity. In conclusion, different signal transduction pathways facilitate protection against NO-induced JNK1/2 activation and apoptosis in rat MC

    Surface state charge dynamics of a high-mobility three dimensional topological insulator

    Full text link
    We present a magneto-optical study of the three-dimensional topological insulator, strained HgTe using a technique which capitalizes on advantages of time-domain spectroscopy to amplify the signal from the surface states. This measurement delivers valuable and precise information regarding the surface state dispersion within <1 meV of the Fermi level. The technique is highly suitable for the pursuit of the topological magnetoelectric effect and axion electrodynamics.Comment: Published version, online Sept 23, 201

    Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase β-TrCP1

    Get PDF
    Loss of the tumor suppressor Pdcd4 was reported for various tumor entities and proposed as a prognostic marker in tumorigenesis. We previously characterized decreased Pdcd4 protein stability in response to mitogenic stimuli, which resulted from p70S6K1-dependent protein phosphorylation, β-TrCP1-mediated ubiquitination, and proteasomal destruction. Following high-throughput screening of natural product extract libraries using a luciferase-based reporter assay to monitor phosphorylation-dependent proteasomal degradation of the tumor suppressor Pdcd4, we succeeded in showing that a crude extract from Eriophyllum lanatum stabilized Pdcd4 from TPA-induced degradation. Erioflorin was identified as the active component and inhibited not only degradation of the Pdcd4-luciferase-based reporter but also of endogenous Pdcd4 at low micromolar concentrations. Mechanistically, erioflorin interfered with the interaction between the E3-ubiquitin ligase β-TrCP1 and Pdcd4 in cell culture and in in vitro binding assays, consequently decreasing ubiquitination and degradation of Pdcd4. Interestingly, while erioflorin stabilized additional β-TrCP-targets (such as IκBα and β-catenin), it did not prevent the degradation of targets of other E3-ubiquitin ligases such as p21 (a Skp2-target) and HIF-1α (a pVHL-target), implying selectivity for β-TrCP. Moreover, erioflorin inhibited the tumor-associated activity of known Pdcd4- and IκBα-regulated αtranscription factors, that is, AP-1 and NF-κB, altered cell cycle progression and suppressed proliferation of various cancer cell lines. Our studies succeeded in identifying erioflorin as a novel Pdcd4 stabilizer that inhibits the interaction of Pdcd4 with the E3-ubiquitin ligase β-TrCP1. Inhibition of E3-ligase/target-protein interactions may offer the possibility to target degradation of specific proteins only as compared to general proteasome inhibition

    Magneto-optics of massive Dirac fermions in bulk Bi2Se3

    Full text link
    We report on magneto-optical studies of Bi2Se3, a representative member of the 3D topological insulator family. Its electronic states in bulk are shown to be well described by a simple Dirac-type Hamiltonian for massive particles with only two parameters: the fundamental bandgap and the band velocity. In a magnetic field, this model implies a unique property - spin splitting equal to twice the cyclotron energy: Es = 2Ec. This explains the extensive magneto-transport studies concluding a fortuitous degeneracy of the spin and orbital split Landau levels in this material. The Es = 2Ec match differentiates the massive Dirac electrons in bulk Bi2Se3 from those in quantum electrodynamics, for which Es = Ec always holds.Comment: 5 pages, 3 figures and Supplementary materials, to be published in Physical Review Letter

    Single valley Dirac fermions in zero-gap HgTe quantum wells

    Full text link
    Dirac fermions have been studied intensively in condensed matter physics in recent years. Many theoretical predictions critically depend on the number of valleys where the Dirac fermions are realized. In this work, we report the discovery of a two dimensional system with a single valley Dirac cone. We study the transport properties of HgTe quantum wells grown at the critical thickness separating between the topologically trivial and the quantum spin Hall phases. At high magnetic fields, the quantized Hall plateaus demonstrate the presence of a single valley Dirac point in this system. In addition, we clearly observe the linear dispersion of the zero mode spin levels. Also the conductivity at the Dirac point and its temperature dependence can be understood from single valley Dirac fermion physics.Comment: version 2: supplementary material adde

    AMPK-independent inhibition of human macrophage ER stress response by AICAR.

    Get PDF
    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR
    • …
    corecore