17 research outputs found

    COSICAF, a fission chamber simulation tool for academic purposes

    No full text
    Since a few years, simulation codes were built at CEA Cadarache to predict the signal of ionisation chambers and taylor detectors for specific applications. It is proposed here to present COSICAF, a tool developed for mainly academic purpose and rapid fission chamber prototyping. This numerical simulation, mostly based on semi-empirical models and Monte-Carlo method will help students to understand how ionisation chambers work. Through the paper, models and their numerical implementation will be discussed. A focus is made on recently implemented features like charge multiplication and correlated source which make the simulation of proportional counter possible. To demonstrate the interest of the code, simulations of a planar fission chamber is proposed

    Test Results of an Innovative and Modular Sensor Design for Fission Chamber Studies

    No full text
    Since many years, the Instrumentation, Sensors and Dosimetry laboratory at CEA Cadarache has been working to propose innovative and robust design of fission chambers. In this framework, few simulation tools like Chester or PyFc were developed to make detector prototyping and optimisation possible. Up to now, the code experimental validations are scarce mainly because of the lack of flexibility of regular fission chambers. In order to set up an experimental database for code validation, an innovative modular twin fission chamber, the CFTM, was designed. It allows to set with precision the inter-electrode gap, the filling gas pressure as well as the fissile deposit used. This detector was irradiated in Minerve zero power reactor in order to gather results for code validation. Thanks to a calibration procedure, a bank of experimental results is available for simulation validation

    COSICAF, a fission chamber simulation tool for academic purposes

    Get PDF
    Since a few years, simulation codes were built at CEA Cadarache to predict the signal of ionisation chambers and taylor detectors for specific applications. It is proposed here to present COSICAF, a tool developed for mainly academic purpose and rapid fission chamber prototyping. This numerical simulation, mostly based on semi-empirical models and Monte-Carlo method will help students to understand how ionisation chambers work. Through the paper, models and their numerical implementation will be discussed. A focus is made on recently implemented features like charge multiplication and correlated source which make the simulation of proportional counter possible. To demonstrate the interest of the code, simulations of a planar fission chamber is proposed
    corecore