8 research outputs found

    Cultivable microbiota associated with Aurelia aurita and Mnemiopsis leidyi

    Get PDF
    The associated microbiota of marine invertebrates plays an important role to the host in relation to fitness, health, and homeostasis. Cooperative and competitive interactions between bacteria, due to release of, for example, antibacterial substances and quorum sensing (QS)/quorum quenching (QQ) molecules, ultimately affect the establishment and dynamics of the associated microbial community. Aiming to address interspecies competition of cultivable microbes associated with emerging model species of the basal animal phyla Cnidaria (Aurelia aurita) and Ctenophora (Mnemiopsis leidyi), we performed a classical isolation approach. Overall, 84 bacteria were isolated from A. aurita medusae and polyps, 64 bacteria from M. leidyi, and 83 bacteria from ambient seawater, followed by taxonomically classification by 16S rRNA gene analysis. The results show that A. aurita and M. leidyi harbor a cultivable core microbiome consisting of typical marine ubiquitous bacteria also found in the ambient seawater. However, several bacteria were restricted to one host suggesting host-specific microbial community patterns. Interbacterial interactions were assessed by (a) a growth inhibition assay and (b) QS interference screening assay. Out of 231 isolates, 4 bacterial isolates inhibited growth of 17 isolates on agar plates. Moreover, 121 of the 231 isolates showed QS-interfering activities. They interfered with the acyl-homoserine lactone (AHL)-based communication, of which 21 showed simultaneous interference with autoinducer 2. Overall, this study provides insights into the cultivable part of the microbiota associated with two environmentally important marine non-model organisms and into interbacterial interactions, which are most likely considerably involved in shaping a healthy and resilient microbiota

    Structure-transport correlation reveals anisotropic charge transport in coupled PbS nanocrystal superlattices

    Full text link
    Semiconductive nanocrystals (NCs) can be self-assembled into ordered superlattices (SLs) to create artificial solids with emerging collective properties. Computational studies have predicted that properties such as electronic coupling or charge transport are determined not only by the individual NCs but also by the degree of their organization and structure. However, experimental proof for a correlation between structure and charge transport in NC SLs is still pending. Here, we perform X-ray nano-diffraction and apply Angular X-ray Cross-Correlation Analysis (AXCCA) to characterize the structures of coupled PbS NC SLs, which are directly correlated with the electronic properties of the same SL microdomains. We find strong evidence for the effect of SL crystallinity on charge transport and reveal anisotropic charge transport in highly ordered monocrystalline hexagonal close-packed PbS NC SLs, caused by the dominant effect of shortest interparticle distance. This implies that transport anisotropy should be a general feature of weakly coupled NC SLs.Comment: 49 pages, 20 Figure

    Enhanced two-photon photoluminescence assisted by multi-resonant characteristics of a gold nanocylinder

    No full text
    Multi-resonant plasmonic simple geometries like nanocylinders and nanorods are highly interesting for two-photon photoluminescence and second harmonic generation applications, due to their easy fabrication and reproducibility in comparison with complex multi-resonant systems like dimers or nanoclusters. We demonstrate experimentally that by using a simple gold nanocylinder we can achieve a double resonantly enhanced two-photon photoluminescence of quantum dots, by matching the excitation wavelength of the quantum dots with a dipolar plasmon mode, while the emission is coupled with a radiative quadrupolar mode. We establish a method to separate experimentally the enhancement factor at the excitation and at the emission wavelengths for this double resonant system. The sensitivity of the spectral positions of the dipolar and quadrupolar plasmon resonances to the ellipticity of the nanocylinders and its impact on the two-photon photoluminescence enhancement are discussed

    Structure–Transport Correlation Reveals Anisotropic Charge Transport in Coupled PbS Nanocrystal Superlattices

    No full text
    The assembly of colloidal semiconductive nanocrystals into highly ordered superlattices predicts novel structure‐related properties by design. However, those structure–property relationships, such as charge transport depending on the structure or even directions of the superlattice, have remained unrevealed so far. Here, electric transport measurements and X‐ray nanodiffraction are performed on self‐assembled lead sulfide nanocrystal superlattices to investigate direction‐dependent charge carrier transport in microscopic domains of these materials. By angular X‐ray cross‐correlation analysis, the structure and orientation of individual superlattices is determined, which are directly correlated with the electronic properties of the same microdomains. By that, strong evidence for the effect of superlattice crystallinity on the electric conductivity is found. Further, anisotropic charge transport in highly ordered monocrystalline domains is revealed, which is attributed to the dominant effect of shortest interparticle distance. This implies that transport anisotropy should be a general feature of weakly coupled nanocrystal superlattices
    corecore