2,277 research outputs found

    Strong field limit analysis of gravitational retro-lensing

    Full text link
    We present a complete treatment in the strong field limit of gravitational retro-lensing by a static spherically symmetric compact object having a photon sphere. The results are compared with those corresponding to ordinary lensing in similar strong field situations. As examples of application of the formalism, a supermassive black hole at the galactic center and a stellar mass black hole in the galactic halo are studied as retro-lenses, in both cases using the Schwarzschild and Reissner-Nordstrom geometries.Comment: 11 pages, 1 figure; v2: minor changes. Accepted for publication in Physical Review

    Strong Gravitational Lensing by Sgr A*

    Full text link
    In recent years, there has been increasing recognition of the potential of the galactic center as a probe of general relativity in the strong field. There is almost certainly a black hole at Sgr A* in the galactic center, and this would allow us the opportunity to probe dynamics near the exterior of the black hole. In the last decade, there has been research into extreme gravitational lensing in the galactic center. Unlike in most applications of gravitational lensing, where the bending angle is of the order of several arc seconds, very large bending angles are possible for light that closely approaches a black hole. Photons may even loop multiple times around a black hole before reaching the observer. There have been many proposals to use light's close approach to the black hole as a probe of the black hole metric. Of particular interest is the property of light lensed by the S stars orbiting in the galactic center. This paper will review some of the attempts made to study extreme lensing as well as extend the analysis of lensing by S stars. In particular, we are interested in the effect of a Reissner-Nordstrom like 1/r^2 term in the metric and how this would affect the properties of relativistic images.Comment: 13 pages, 9 figures. Submitted as invited review article for the GR19 issue of CQ

    Microlensing Detections of Moons of Exoplanets

    Full text link
    We investigate the characteristic of microlensing signals of Earth-like moons orbiting ice-giant planets. From this, we find that non-negligible satellite signals occur when the planet-moon separation is similar to or greater than the Einstein radius of the planet. We find that the satellite signal does not diminish with the increase of the planet-moon separation beyond the Einstein radius of the planet unlike the planetary signal which vanishes when the planet is located well beyond the Einstein radius of the star. We also find that the satellite signal tends to have the same sign as that of the planetary signal. These tendencies are caused by the lensing effect of the star on the moon in addition to the effect of the planet. We determine the range of satellite separations where the microlensing technique is optimized for the detections of moons. By setting an upper limit as the angle-average of the projected Hill radius and a lower limit as the half of the Einstein radius of the planet, we find that the microlensing method would be sensitive to moons with projected separations from the planet of 0.05AUdp0.24AU0.05 {\rm AU} \lesssim d_{\rm p} \lesssim 0.24 {\rm AU} for a Jupiter-mass planet, 0.03AUdp0.17AU0.03 {\rm AU}\lesssim d_{\rm p} \lesssim 0.17 {\rm AU} for a Saturn-mass planet, and 0.01AUdp0.08AU0.01 {\rm AU} \lesssim d_{\rm p} \lesssim 0.08 {\rm AU} for a Uranus-mass planet. We compare the characteristics of the moons to be detected by the microlensing and transit techniquesComment: 6pages, 6 figure

    Light's Bending Angle due to Black Holes: From the Photon Sphere to Infinity

    Get PDF
    The bending angle of light is a central quantity in the theory of gravitational lensing. We develop an analytical perturbation framework for calculating the bending angle of light rays lensed by a Schwarzschild black hole. Using a perturbation parameter given in terms of the gravitational radius of the black hole and the light ray's impact parameter, we determine an invariant series for the strong-deflection bending angle that extends beyond the standard logarithmic deflection term used in the literature. In the process, we discovered an improvement to the standard logarithmic deflection term. Our perturbation framework is also used to derive as a consistency check, the recently found weak deflection bending angle series. We also reformulate the latter series in terms of a more natural invariant perturbation parameter, one that smoothly transitions between the weak and strong deflection series. We then compare our invariant strong deflection bending-angle series with the numerically integrated exact formal bending angle expression, and find less than 1% discrepancy for light rays as far out as twice the critical impact parameter. The paper concludes by showing that the strong and weak deflection bending angle series together provide an approximation that is within 1% of the exact bending angle value for light rays traversing anywhere between the photon sphere and infinity.Comment: 22 pages, 5 figure

    Crisis in the Making: What is Wrong with Pennsylvania Public Health Law

    Get PDF
    There are few areas of government enterprise where the need to “get it right” is so critical as formulating and executing laws affecting the public health. When the government sets out to exercise its police power 1 to control the spread of disease, its goal is to accomplish an immensely important practical task; and its success is to a great degree  objectively determinable—the spread of disease is either curtailed or not. However, the manner in which the government’s goal is reached reflects not only its pragmatic concerns but also a society’s political, social, and legal values

    Maximal Acceleration Effects in Kerr Space

    Get PDF
    We consider a model in which accelerated particles experience line--elements with maximal acceleration corrections that are introduced by means of successive approximations. It is shown that approximations higher than the first need not be considered. The method is then applied to the Kerr metric. The effective field experienced by accelerated test particles contains corrections that vanish in the limit 0\hbar\to 0, but otherwise affect the behaviour of matter greatly. The corrections generate potential barriers that are external to the horizon and are impervious to classical particles.Comment: 16 pages, 10 figures, to appear on Phys. Lett.

    Estimating the parameters of the Sgr A* black hole

    Full text link
    The measurement of relativistic effects around the galactic center may allow in the near future to strongly constrain the parameters of the supermassive black hole likely present at the galactic center (Sgr A*). As a by-product of these measurements it would be possible to severely constrain, in addition, also the parameters of the mass-density distributions of both the innermost star cluster and the dark matter clump around the galactic center.Comment: Accepted for publication on General Relativity and Gravitation, 2010. 11 Pages, 1 Figur

    Prediction in forensic science: a critical examination of common understandings

    Get PDF
    In this commentary, we argue that the term 'prediction' is overly used when in fact, referring to foundational writings of de Finetti, the correspondent term should be inference. In particular, we intend (i) to summarize and clarify relevant subject matter on prediction from established statistical theory, and (ii) point out the logic of this understanding with respect practical uses of the term prediction. Written from an interdisciplinary perspective, associating statistics and forensic science as an example, this discussion also connects to related fields such as medical diagnosis and other areas of application where reasoning based on scientific results is practiced in societal relevant contexts. This includes forensic psychology that uses prediction as part of its vocabulary when dealing with matters that arise in the course of legal proceedings

    La naturaleza decisoria de las conclusiones de los expertos en ciencia forense (The decisionalization of individualization)

    Get PDF
    En la ciencia forense y ramas de la ciencia adyacentes, tanto investigadores del ámbito académico como quienes las practican continúan divergiendo en la percepción y comprensión del término “individualización”, es decir, la defensa de la tesis de que es posible reducir un conjunto de potenciales donantes de un vestigio forense a una única fuente. En concreto, se ha puesto de manifiesto que recientes cambios que entienden la práctica de la individualización como una decisión no son más que un mero cambio de etiqueta [1], dejando los cambios fundamentales en el orden del pensar y del entender aún pendientes. Es más, asociaciones profesionales y expertos huyen de adherirse a la noción de decisión tal y como la define la teoría formal de la decisión en la que la individualización puede contextualizarse, principalmente por las dificultades para tratar sobre las medidas de deseabilidad o no de las consecuencias de las decisiones (por ejemplo, utilizando las funciones de utilidad). Apoyándose en investigaciones existentes en esta área, este artículo presenta y discute sobre conceptos fundamentales de utilidades y costes, con particular referencia a su aplicación a la individualización forense. El artículo subraya que una adecuada comprensión de las herramientas de la decisión no solo reduce el número de asignaciones individuales que la aplicación de la teoría de la decisión requiere, sino que también muestra cómo esas asignaciones pueden relacionarse significativamente con las propiedades constituyentes del problema de la decisión en el mundo real al que se aplica la teoría. Se argumenta que la “decisionalización” de la individualización requiere esa percepción fundamental para iniciar cambios en las comprensiones subyacentes de esos campos, no meramente en el ámbito de sus etiquetas
    corecore