11 research outputs found

    COSMO: Contextualized Scene Modeling with Boltzmann Machines

    Get PDF
    Scene modeling is very crucial for robots that need to perceive, reason about and manipulate the objects in their environments. In this paper, we adapt and extend Boltzmann Machines (BMs) for contextualized scene modeling. Although there are many models on the subject, ours is the first to bring together objects, relations, and affordances in a highly-capable generative model. For this end, we introduce a hybrid version of BMs where relations and affordances are introduced with shared, tri-way connections into the model. Moreover, we contribute a dataset for relation estimation and modeling studies. We evaluate our method in comparison with several baselines on object estimation, out-of-context object detection, relation estimation, and affordance estimation tasks. Moreover, to illustrate the generative capability of the model, we show several example scenes that the model is able to generate.Comment: 40 pages, 15 figures, 9 tables, accepted to the Robotics and Autonomous Systems (RAS) special issue on Semantic Policy and Action Representations for Autonomous Robots (SPAR

    CINet: A Learning Based Approach to Incremental Context Modeling in Robots

    Get PDF
    There have been several attempts at modeling context in robots. However, either these attempts assume a fixed number of contexts or use a rule-based approach to determine when to increment the number of contexts. In this paper, we pose the task of when to increment as a learning problem, which we solve using a Recurrent Neural Network. We show that the network successfully (with 98\% testing accuracy) learns to predict when to increment, and demonstrate, in a scene modeling problem (where the correct number of contexts is not known), that the robot increments the number of contexts in an expected manner (i.e., the entropy of the system is reduced). We also present how the incremental model can be used for various scene reasoning tasks.Comment: The first two authors have contributed equally, 6 pages, 8 figures, International Conference on Intelligent Robots (IROS 2018

    Boltzmann makineleri kullanarak bağlamsallaşmış sahne modellemesi.

    No full text
    Scene modeling is very crucial for robots that need to perceive, reason about and manipulate the objects in their environments. In this thesis, we propose a variant of Boltzmann Machines (BMs) for contextualized scene modeling. Although many computational models have been proposed for the problem, ours is the first to bring together objects, relations, and affordances in a highly-capable generative model. For this end, we introduce a hybrid version of BMs where relations and affordances are introduced with shared, tri-way connections. We evaluate our method in comparison with several baselines on missing or out-of-context object detection, relation estimation, and affordance estimation tasks. Moreover, we also illustrate scene generation capabilities of the model.M.S. - Master of Scienc

    COSMO: Contextualized scene modeling with Boltzmann Machines

    No full text
    Scene modeling is very crucial for robots that need to perceive, reason about and manipulate the objects in their environments. In this paper, we adapt and extend Boltzmann Machines (BMs) for contextualized scene modeling. Although there are many models on the subject, ours is the first to bring together objects, relations, and affordances in a highly-capable generative model. For this end, we introduce a hybrid version of BMs where relations and affordances are incorporated with shared, tri-way connections into the model. Moreover, we introduce a dataset for relation estimation and modeling studies. We evaluate our method in comparison with several baselines on object estimation, out-of-context object detection, relation estimation, and affordance estimation tasks. Moreover, to illustrate the generative capability of the model, we show several example scenes that the model is able to generate, and demonstrate the benefits of the model on a humanoid robot

    CINet: A Learning Based Approach to Incremental Context Modeling in Robots

    No full text
    There have been several attempts at modeling context in robots. However, either these attempts assume a fixed number of contexts or use a rule-based approach to determine when to increment the number of contexts. In this paper, we pose the task of when to increment as a learning problem, which we solve using a Recurrent Neural Network. We show that the network successfully (with 98% testing accuracy) learns to predict when to increment, and demonstrate, in a scene modeling problem (where the correct number of contexts is not known), that the robot increments the number of contexts in an expected manner (i.e., the entropy of the system is reduced). We also present how the incremental model can be used for various scene reasoning tasks

    What is (Missing or Wrong) in the Scene? A Hybrid Deep Boltzmann Machine for Contextualized Scene Modeling

    Get PDF
    Scene models allow robots to reason about what is in the scene, what else should be in it, and what should not be in it. In this paper, we propose a hybrid Boltzmann Machine (BM) for scene modeling where relations between objects are integrated. To be able to do that, we extend BM to include tri-way edges between visible (object) nodes and make the network to share the relations across different objects. We evaluate our method against several baseline models (Deep Boltzmann Machines, and Restricted Boltzmann Machines) on a scene classification dataset, and show that it performs better in several scene reasoning tasks

    Learning to Increment A Contextual Model

    No full text
    In this paper, we summarized our efforts on incremental construction of latent variables in context (topic) models. With our models, an agent can incrementally learn a representation of critical contextual information. We demonstrated that a learning-based formulation outperforms rule-based models, and generalizes well across many settings and to real dat
    corecore