91 research outputs found

    Lyb-2 system of mouse B cells. Evidence for a role in the generation of antibody-forming cells

    Get PDF
    The Lyb-2 cell-surface alloantigens of the mouse are selectively and perhaps exclusively expressed in the B lymphocyte lineage, but not on antibody- forming cells. Thus if the Lyb-2 molecule is concerned in specific B cell function, it must participate in the generative phase of the antibody response. Accordingly, monoclonal Lyb-2 antibody was found to depress the plaque- forming cell (PFC) response to sheep erythrocytes in 5-d Mishell-Dutton assays when added within the first 3 d of culture, but not later. The rate of PFC generation was not affected, signifying an absolute reduction in the number of PFC generated. Because reduction of PFC counts by Lyb-2 antibody was not affected by exclusion of Lyt-2(+) T cells, it is unlikely that the reduction depends on augmented suppression by T cells. Augmented B cell- mediated suppression is also unlikely, because the PFC response of serial combinations of congenic Lyb-2.1 and Lyb-2.2 cells, in the presence of monoclonal Lyb-2.1 antibody, was reduced only in direct proportion to the number of Lyb-2.1 cells present. The PFC response of Lyb-2.1/Lyb-2.2 heterozygous cells was not reduced by Lyb-2.1 antibody, presumably because generation of PFC is impeded only if most Lyb-2 sites are blocked. Further evidence that the molecule identified by Lyb-2 plays a critical role in the generation of antibody-forming cells (AFC) in response to T-dependent antigen comes from the finding that Lyb-2 antibody does not reduce the PFC response to the T-independent antigens trinitrophenylated (TNP) Brucella abortus and TNP-FicolI, although elimination of Lyb-2(+) cells from the starting population by Lyb-2 antibody and complement reduces the PFC response to T- dependent and T-independent antigens alike

    Altered serological and cellular reactivity to H-2 antigens after target cell infection with vaccinia virus

    Get PDF
    MICE generate cytotoxic T lymphocytes (CTL) which are able to lyse virus infected target cells in vitro after infection with lymphocytic choriomeningitis virus (LCMV) and pox-viruses1−3. CTL kill syngeneic and semiallogenic infected cells but not allogenic infected targets. Target cell lysis in these systems seems to be restricted by H-2 antigens, especially by the K or D end of the major histocompatibility complex (MHC). In experiments where virus specific sensitised lymphocytes kill virus infected allogenic target cells4 the effector lymphocytes have not been characterised exactly. Recent investigations suggest that the active cell in this assay, at least in the measles infection, is a non-thymus derived cell (H. Kreth, personal communication). An H-2 restriction of cell mediated cytolysis (CMC) to trinitrophenol (TNP)-modified lymphocytes has also been described5. Zinkernagel and Doherty6 postulated that the CTL is directed against syngeneic H-2 antigens and viral antigens and they suggested an alteration of H-2 induced by the LCMV infection. Earlier7 we found a close topological relationship between H-2 antigens and the target antigen(s) responsible for CMC in the vaccinia system. Here we report experiments which were carried out to prove alteration of H-2 after infection of L-929 fibroblasts with vaccinia virus

    Hypermethylation of CpG islands in the mouse asparagine synthetase gene: relationship to asparaginase sensitivity in lymphoma cells. Partial methylation in normal cells

    Get PDF
    We have sequenced the promoter region of the murine asparagine synthetase gene and examined its methylation profile in the CpG islands of L-asparaginase-sensitive 6C3HED cells (asparagine auxotrophs) and resistant variants (prototrophs). In the former, complete methylation of the CpG island is correlated with failure of expression of mRNA: cells of the latter possess both methylated and unmethylated alleles, as do cells of the intrinsically asparagine-independent lines L1210 and EL4. A similar phenomenon was seen in normal splenic cells of adult mice. This was age related: no methylation was found in weanlings, but up to 45% of gene copies in animals 18 weeks or older were methylated. It was also tissue related, with methylation occurring rarely in liver cells. The relationship of these changes to oncogenesis is considered. http://www.bjcancer.com © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed.</p> <p>Methods</p> <p>Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34<sup>+ </sup>in a flow cytometer.</p> <p>Results</p> <p>Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a <it>p </it>value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a <it>p </it>value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a <it>p </it>value = 0.138. However, CD34<sup>+ </sup>enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a <it>p </it>value = 0.001.</p> <p>Conclusions</p> <p>Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34<sup>+ </sup>cells after rapid-cooling is critically needed.</p

    Linkage Groups of the θ and Ly-A Loci

    No full text

    The Membranes of Lymphocytes

    No full text
    • …
    corecore