1,318 research outputs found

    Range safety signal propagation through the SRM exhaust plume of the space shuttle

    Get PDF
    Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence

    Discovery of orbital decay in SMC X-1

    Get PDF
    The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system

    Stoichiometry, structure, and transport in the quasi-one-dimensional metal, Li(0.9)Mo(6)O(17)

    Get PDF
    A correlation between lattice parameters, oxygen composition, and the thermoelectric and Hall coefficients is presented for single-crystal Li(0.9)Mo(6)O(17), a quasi-one-dimensional (Q1D) metallic compound. The possibility that this compound is a compensated metal is discussed in light of a substantial variability observed in the literature for these transport coefficients.Comment: 5 pages, 4 Figures; Phys. Rev. B (in press

    Multiple case-study analysis of quality management practices within UK Six Sigma and non-Six Sigma manufacturing small- and medium-sized enterprises

    Get PDF
    This paper examines multiple case-study analysis of quality management practices within UK Six Sigma and non-Six Sigma manufacturing small- and medium-sized enterprises

    The 2008 Mars Phoenix Lander Thermal and Evolved Gas Analyzer (TEGA) Dataset: Placing Easily Interpretable Evolved Gas Data on the Planetary Data System (PDS)

    Get PDF
    The Phoenix Scout Lander mission investigated the north polar region of Mars in 2008 with the goal to study the history of water, assess the past/present Martian climate, search for organics, and evaluate the potential for past/present microbial habit-ability on Mars. To accomplish this goal, the Phoenix Landers Thermal and Evolved-Gas Analyzer (TEGA) instrument assessed the gas composition of the Martian atmosphere and evaluated the mineralogy of the Martian regolith. The TEGA instrument consisted of eight small ovens connected to a 4 channel magnetic sector mass spectrometer. The ovens heated soil samples from ambient to 1000C where the gases (e.g., H2O, CO2, etc.) evolved from thermal decomposition of mineral phases were analyzed by the mass spectrometer. Minerals thermally decomposed at characteristic temperatures and the evolving gases indicated the presence of perchlorate, carbonate, and hydrated phases in the Phoenix landing site soils

    MITO measurements of the Sunyaev-Zeldovich Effect in the Coma cluster of galaxies

    Get PDF
    We have measured the Sunyaev-Zeldovich effect towards the Coma cluster (A1656) with the MITO experiment, a 2.6-m telescope equipped with a 4-channel 17 arcminute (FWHM) photometer. Measurements at frequency bands 143+/-15, 214+/-15, 272+/-16 and 353+/-13 GHz, were made during 120 drift scans of Coma. We describe the observations and data analysis that involved extraction of the S-Z signal by employing a spatial and spectral de-correlation scheme to remove a dominant atmospheric component. The deduced values of the thermal S-Z effect in the first three bands are DT_{0} = -179+/-38,-33+/-81,170+/-35 microKelvin in the cluster center. The corresponding optical depth, tau=(4.1+/-0.9) 10^{-3}, is consistent (within errors) with both the value from a previous low frequency S-Z measurement, and the value predicted from the X-ray deduced gas parameters.Comment: Ap.J.Letters accepted, 4 pages, 2 figure

    Predicting the Starquakes in PSR J0537-6910

    Get PDF
    We report on more than 7 years of monitoring of PSR J0537-6910, the 16 ms pulsar in the Large Magellanic Cloud, using data acquired with the RXTE. During this campaign the pulsar experienced 23 sudden increases in frequency (``glitches'') amounting to a total gain of over six ppm of rotation frequency superposed on its gradual spindown of d(nu)/d(t) = -2e-10 Hz/s. The time interval from one glitch to the next obeys a strong linear correlation to the amplitude of the first glitch, with a mean slope of about 400 days ppm (6.5 days per uHz), such that these intervals can be predicted to within a few days, an accuracy which has never before been seen in any other pulsar. There appears to be an upper limit of ~40 uHz for the size of glitches in_all_ pulsars, with the 1999 April glitch of J0537 as the largest so far. The change in the spindown of J0537 across the glitches, Delta(d(nu)/d(t)), appears to have the same hard lower limit of -1.5e-13 Hz/s, as, again, that observed in all other pulsars. The spindown continues to increase in the long term, d(d(nu)/d(t))/d(t) = -1e-21 Hz/s/s, and thus the timing age of J0537 (-0.5 nu d(nu)/d(t)) continues to decrease at a rate of nearly one year every year, consistent with movement of its magnetic moment away from its rotational axis by one radian every 10,000 years, or about one meter per year. J0537 was likely to have been born as a nearly-aligned rotator spinning at 75-80 Hz, with a |d(nu)/d(t)| considerably smaller than its current value of 2e-10 Hz/s. The pulse profile of J0537 consists of a single pulse which is found to be flat at its peak for at least 0.02 cycles.Comment: 54 pages, 12 figures. Accepted for publication in The Astrophysical Journal. Cleaner figure 2. V4 -- in line with version accepted by Ap

    Pulsar Constraints on Neutron Star Structure and Equation of State

    Full text link
    With the aim of constraining the structural properties of neutron stars and the equation of state of dense matter, we study sudden spin-ups, glitches, occurring in the Vela pulsar and in six other pulsars. We present evidence that glitches represent a self-regulating instability for which the star prepares over a waiting time. The angular momentum requirements of glitches in Vela indicate that at least 1.4% of the star's moment of inertia drives these events. If glitches originate in the liquid of the inner crust, Vela's `radiation radius' must exceed ~12 km for a mass of 1.4 solar masses. Observational tests of whether other neutron stars obey this constraint will be possible in the near future.Comment: 5 pages, including figures. To appear in Physical Review Letter
    • …
    corecore