8,120 research outputs found

    Canister closing device Patent

    Get PDF
    Design and characteristics of device for closing canisters under high vacuum condition

    Hadronic contribution to the muon g-2: a theoretical determination

    Full text link
    The leading order hadronic contribution to the muon g-2, aμHADa_{\mu}^{HAD}, is determined entirely from theory using an approach based on Cauchy's theorem in the complex squared energy s-plane. This is possible after fitting the integration kernel in aμHADa_{\mu}^{HAD} with a simpler function of ss. The integral determining aμHADa_{\mu}^{HAD} in the light-quark region is then split into a low energy and a high energy part, the latter given by perturbative QCD (PQCD). The low energy integral involving the fit function to the integration kernel is determined by derivatives of the vector correlator at the origin, plus a contour integral around a circle calculable in PQCD. These derivatives are calculated using hadronic models in the light-quark sector. A similar procedure is used in the heavy-quark sector, except that now everything is calculable in PQCD, thus becoming the first entirely theoretical calculation of this contribution. Using the dual resonance model realization of Large NcN_{c} QCD to compute the derivatives of the correlator leads to agreement with the experimental value of aμa_\mu. Accuracy, though, is currently limited by the model dependent calculation of derivatives of the vector correlator at the origin. Future improvements should come from more accurate chiral perturbation theory and/or lattice QCD information on these derivatives, allowing for this method to be used to determine aμHADa_{\mu}^{HAD} accurately entirely from theory, independently of any hadronic model.Comment: Several additional clarifying paragraphs have been added. 1/N_c corrections have been estimated. No change in result

    The Distribution of Metallicity in the IGM at z~2.5: OVI and CIV Absorption in the Spectra of 7 QSOs

    Full text link
    We present a direct measurement of the metallicity distribution function for the high redshift intergalactic medium. We determine the shape of this function using survival statistics, which account for both detections and non-detections of OVI and CIV associated with HI absorption in quasar spectra. Our OVI sample probes the metal content of ~50% of all baryons at z~2.5. We find a median intergalactic abundance of [O,C/H]=-2.82; the differential abundance distribution is approximately lognormal with mean ~-2.85 and \sigma=0.75 dex. Some 60-70% the Lya forest lines are enriched to observable levels ([O,C/H]>-3.5) while the remaining ~30% of the lines have even lower abundances. Thus we have not detected a universal metallicity floor as has been suggested for some Population III enrichment scenaria. In fact, we argue that the bulk of the intergalactic metals formed later than the first stars that are thought to have triggered reionization. We do not observe a significant trend of decreasing metallicity toward the lower density IGM, at least within regions that would be characterized as filaments in numerical simulations. However, an [O/H] enhancement may be present at somewhat high densities. We estimate that roughly half of all baryons at these redshifts have been enriched to [O/H]>=-3.5. We develop a simple model for the metallicity evolution of the IGM, to estimate the chemical yield of galaxies formed prior to z~2.5. We find that the typical galaxy recycled 0.1-0.4% of its mass back into the IGM as heavy elements in the first 3 Gyr after the Big Bang.Comment: 23 pages in emulateapj, 19 figures. Accepted to ApJ, pending review of new changes. Revised comparison between our results and Schaye et al (2003

    Conjugatable water-soluble Pt(ii) and Pd(ii) porphyrin complexes: Novel nano- and molecular probes for optical oxygen tension measurement in tissue engineering

    Get PDF
    Measurement of oxygen tension in compressed collagen sheets was performed using matrix-embedded optical oxygen sensors based on platinum(II) and palladium(II) porphyrins supported on polyacrylamide nanoparticles. Bespoke, fully water-soluble, mono-functionalised Pt(II) and Pd(II) porphyrin complexes designed for conjugation under mild conditions were obtained using microwave-assisted metallation. The new sensors display a linear response (1/τ vs. O₂) to varying oxygen tension over a biologically relevant range (7.0 × 10⁻⁴ to 2.7 × 10⁻¹ mM) in aqueous solutions; a behaviour that is maintained following conjugation to polyacrylamide nanoparticles, and following embedding of the nanosensors in compressed collagen sheets, paving the way to innovative approaches for real-time resolution of oxygen gradients throughout 3D matrices useful for tissue regeneration

    Pulsar timing arrays as imaging gravitational wave telescopes: angular resolution and source (de)confusion

    Full text link
    Pulsar timing arrays (PTAs) will be sensitive to a finite number of gravitational wave (GW) "point" sources (e.g. supermassive black hole binaries). N quiet pulsars with accurately known distances d_{pulsar} can characterize up to 2N/7 distant chirping sources per frequency bin \Delta f_{gw}=1/T, and localize them with "diffraction limited" precision \delta\theta \gtrsim (1/SNR)(\lambda_{gw}/d_{pulsar}). Even if the pulsar distances are poorly known, a PTA with F frequency bins can still characterize up to (2N/7)[1-(1/2F)] sources per bin, and the quasi-singular pattern of timing residuals in the vicinity of a GW source still allows the source to be localized quasi-topologically within roughly the smallest quadrilateral of quiet pulsars that encircles it on the sky, down to a limiting resolution \delta\theta \gtrsim (1/SNR) \sqrt{\lambda_{gw}/d_{pulsar}}. PTAs may be unconfused, even at the lowest frequencies, with matched filtering always appropriate.Comment: 7 pages, 1 figure, matches Phys.Rev.D versio

    Investigating the role of verbal working memory in young children's sentence comprehension

    No full text
    This study considers the role of verbal working memory in sentence comprehension in typically developing English-speaking children. Fifty-six (N = 56) children aged 4;0–6;6 completed a test of language comprehension that contained sentences which varied in complexity, standardized tests of vocabulary and nonverbal intelligence, and three tests of memory that measured the three verbal components of Baddeley's model of Working Memory (WM): the phonological loop, the episodic buffer, and the central executive. The results showed that children experienced most difficulty comprehending sentences that contained noncanonical word order (passives and object relative clauses). A series of linear mixed effects models were run to analyze the contribution of each component of WM to sentence comprehension. In contrast to most previous studies, the measure of the central executive did not predict comprehension accuracy. A canonicity by episodic buffer interaction showed that the episodic buffer measure was positively associated with better performance on the noncanonical sentences. The results are discussed with reference to capacity-limit and experience-dependent approaches to language comprehension

    Comparing Gravitational Waveform Extrapolation to Cauchy-Characteristic Extraction in Binary Black Hole Simulations

    Get PDF
    We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar Ψ4\Psi_4 at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects---unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-Ψ4\Psi_4 waveforms. We examine data from several different binary configurations and measure the dominant sources of error in the extrapolated-Ψ4\Psi_4 and CCE waveforms. In some cases, we find that NP waveforms extrapolated to infinity agree with the corresponding CCE waveforms to within the estimated error bars. However, we find that in other cases extrapolated and CCE waveforms disagree, most notably for m=0m=0 "memory" modes.Comment: 26 pages, 20 figure

    Introduction to the Finger Lakes National Forest Archaeology Project

    Get PDF
    An introduction to the volume, which presents research conducted at the convergence of two projects. One, a surve

    Gravitational Lensing of the X-Ray Background by Clusters of Galaxies

    Get PDF
    Gravitational lensing by clusters of galaxies affects the cosmic X-ray background (XRB) by altering the observed density and flux distribution of background X-ray sources. At faint detection flux thresholds, the resolved X-ray sources appear brighter and diluted, while the unresolved component of the XRB appears dimmer and more anisotropic, due to lensing. The diffuse X-ray intensity in the outer halos of clusters might be lower than the sky-averaged XRB, after the subtraction of resolved sources. Detection of the lensing signal with a wide-field X-ray telescope could probe the mass distribution of a cluster out to its virialization boundary. In particular, we show that the lensing signature imprinted on the resolved component of the XRB by the cluster A1689, should be difficult but possible to detect out to 8' at the 2-4 sigma level, after 10^6 seconds of observation with the forthcoming AXAF satellite. The lensing signal is fairly insensitive to the lens redshift in the range 0.1<z<0.6. The amplitude of the lensing signal is however sensitive to the faint end slope of the number-flux relation for unresolved X-ray sources, and can thus help constrain models of the XRB. A search for X-ray arcs or arclets could identify the fraction of all faint sources which originate from extended emission of distant galaxies. The probability for a 3 sigma detection of an arclet which is stretched by a factor of about 3 after a 10^6 seconds observation of A1689 with AXAF, is roughly comparable to the fraction of all background X-ray sources that have an intrinsic size of order 1''.Comment: 41 LaTeX pages, 11 postscript figures, 1 table, in AASTeX v4.0 format. To appear in ApJ, April 1, 1997, Vol. 47

    Glucocorticoid Receptor Binding Induces Rapid and Prolonged Large-Scale Chromatin Decompaction at Multiple Target Loci.

    Get PDF
    Glucocorticoids act by binding to the glucocorticoid receptor (GR), which binds to specific motifs within enhancers of target genes to activate transcription. Previous studies have suggested that GRs can promote interactions between gene promoters and distal elements within target loci. In contrast, we demonstrate here that glucocorticoid addition to mouse bone-marrow-derived macrophages produces very rapid chromatin unfolding detectable by fluorescence in situ hybridization (FISH) at loci associated with GR binding. Rapid chromatin decompaction was generally not dependent on transcription at those loci that are known to be inducible in both mouse and human macrophages and was sustained for up to 5 days following ligand removal. Chromatin decompaction was not dependent upon persistent GR binding, which decayed fully after 24 hr. We suggest that sustained large-scale chromatin reorganization forms an important part of the response to glucocorticoid and might contribute to glucocorticoid sensitivity and resistance
    corecore