8,349 research outputs found

    Simulation of the small punch creep test with consideration of variation of material properties

    Get PDF
    A new finite element model of the small punch creep test is described. The material constitutive relationship for creep considered is a simple Norton power law: in this study the exponent in the power law is varied for each element to simulate the random behaviour of creep. The influence of this random variation, and the effect of the friction factor between the punch and specimen, on the deformation and stress field has been investigated

    Malcolm Brown, The Politics of Irish Literature

    Get PDF

    Canister closing device Patent

    Get PDF
    Design and characteristics of device for closing canisters under high vacuum condition

    An algebraic turbulence model for three-dimensional viscous flows

    Get PDF
    An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number

    The Distribution of Metallicity in the IGM at z~2.5: OVI and CIV Absorption in the Spectra of 7 QSOs

    Full text link
    We present a direct measurement of the metallicity distribution function for the high redshift intergalactic medium. We determine the shape of this function using survival statistics, which account for both detections and non-detections of OVI and CIV associated with HI absorption in quasar spectra. Our OVI sample probes the metal content of ~50% of all baryons at z~2.5. We find a median intergalactic abundance of [O,C/H]=-2.82; the differential abundance distribution is approximately lognormal with mean ~-2.85 and \sigma=0.75 dex. Some 60-70% the Lya forest lines are enriched to observable levels ([O,C/H]>-3.5) while the remaining ~30% of the lines have even lower abundances. Thus we have not detected a universal metallicity floor as has been suggested for some Population III enrichment scenaria. In fact, we argue that the bulk of the intergalactic metals formed later than the first stars that are thought to have triggered reionization. We do not observe a significant trend of decreasing metallicity toward the lower density IGM, at least within regions that would be characterized as filaments in numerical simulations. However, an [O/H] enhancement may be present at somewhat high densities. We estimate that roughly half of all baryons at these redshifts have been enriched to [O/H]>=-3.5. We develop a simple model for the metallicity evolution of the IGM, to estimate the chemical yield of galaxies formed prior to z~2.5. We find that the typical galaxy recycled 0.1-0.4% of its mass back into the IGM as heavy elements in the first 3 Gyr after the Big Bang.Comment: 23 pages in emulateapj, 19 figures. Accepted to ApJ, pending review of new changes. Revised comparison between our results and Schaye et al (2003

    Hadronic contribution to the muon g-2: a theoretical determination

    Full text link
    The leading order hadronic contribution to the muon g-2, aμHADa_{\mu}^{HAD}, is determined entirely from theory using an approach based on Cauchy's theorem in the complex squared energy s-plane. This is possible after fitting the integration kernel in aμHADa_{\mu}^{HAD} with a simpler function of ss. The integral determining aμHADa_{\mu}^{HAD} in the light-quark region is then split into a low energy and a high energy part, the latter given by perturbative QCD (PQCD). The low energy integral involving the fit function to the integration kernel is determined by derivatives of the vector correlator at the origin, plus a contour integral around a circle calculable in PQCD. These derivatives are calculated using hadronic models in the light-quark sector. A similar procedure is used in the heavy-quark sector, except that now everything is calculable in PQCD, thus becoming the first entirely theoretical calculation of this contribution. Using the dual resonance model realization of Large NcN_{c} QCD to compute the derivatives of the correlator leads to agreement with the experimental value of aμa_\mu. Accuracy, though, is currently limited by the model dependent calculation of derivatives of the vector correlator at the origin. Future improvements should come from more accurate chiral perturbation theory and/or lattice QCD information on these derivatives, allowing for this method to be used to determine aμHADa_{\mu}^{HAD} accurately entirely from theory, independently of any hadronic model.Comment: Several additional clarifying paragraphs have been added. 1/N_c corrections have been estimated. No change in result

    Quasar Parallax: a Method for Determining Direct Geometrical Distances to Quasars

    Full text link
    We describe a novel method to determine direct geometrical distances to quasars that can measure the cosmological constant, Lambda, with minimal assumptions. This method is equivalent to geometric parallax, with the `standard length' being the size of the quasar broad emission line region (BELR) as determined from the light travel time measurements of reverberation mapping. The effect of non-zero Lambda on angular diameter is large, 40% at z=2, so mapping angular diameter distances vs. redshift will give Lambda with (relative) ease. In principle these measurements could be made in the UV, optical, near infrared or even X-ray bands. Interferometers with a resolution of 0.01mas are needed to measure the size of the BELR in z=2 quasars, which appear plausible given reasonable short term extrapolations of current technology.Comment: 13 pages, with 3 figures. ApJ Letters, in press (Dec 20, 2002

    Limb radiance inversion radiometer

    Get PDF
    Engineering and scientific objectives of the LRIR experiment are described along with system requirements, subassemblies, and experiment operation. The mechanical, electrical, and thermal interfaces between the LRIR experiment and the Nimbus F spacecraft are defined. The protoflight model qualification and acceptance test program is summarized. Test data is presented in tables to give an overall view of each test parameter and possible trends of the performance of the LRIR experiment. Conclusions and recommendations are included
    • …
    corecore