106 research outputs found

    GENESI: Wireless sensor networks for structural monitoring

    Get PDF
    The GENESI project has the ambitious goal of bringing WSN technology to the level where it can provide the core of the next generation of systems for structural health monitoring that are long lasting, pervasive and totally distributed and autonomous. This goal requires embracing engineering and scientific challenges never successfully tackled before. Sensor nodes will be redesigned to overcome their current limitations, especially concerning energy storage and provisioning (we need devices with virtually infinite lifetime) and resilience to faults and interferences (for reliability and robustness). New software and protocols will be defined to fully take advantage of the new hardware, providing new paradigms for cross-layer interaction at all layers of the protocol stack and satisfying the requirements of a new concept of Quality of Service (QoS) that is application-driven, truly reflecting the end user perspective and expectations. The GENESI project will develop long lasting sensor nodes by combining cutting edge technologies for energy generation from the environment (energy harvesting) and green energy supply (small form factor fuel cells); GENESI will define models for energy harvesting, energy conservation in super-capacitors and supplemental energy availability through fuel cells, in addition to the design of new algorithms and protocols for dynamic allocation of sensing and communication tasks to the sensors. The project team will design communication protocols for large scale heterogeneous wireless sensor/actuator networks with energy-harvesting capabilities and define distributed mechanisms for context assessment and situation awareness. This paper presents an analysis of the GENESI system requirements in order to achieve the ambitious goals of the project. Extending from the requirements presented, the emergent system specification is discussed with respect to the selection and integration of relevant system components.The resulting integrated system will be evaluated and characterised to ensure that it is capable of satisfying the functional requirements of the projec

    Towards persistent structural health monitoring through sustainable wireless sensor networks

    Get PDF
    This paper documents the design, implementation and characterisation of a wireless sensor node (GENESI Node v1.0), applicable to long-term structural health monitoring. Presented is a three layer abstraction of the hardware platform; consisting of a Sensor Layer, a Main Layer and a Power Layer. Extended operational lifetime is one of the primary design goals, necessitating the inclusion of supplemental energy sources, energy awareness, and the implementation of optimal components (microcontroller(s), RF transceiver, etc.) to achieve lowest-possible power consumption, whilst ensuring that the functional requirements of the intended application area are satisfied. A novel Smart Power Unit has been developed; including intelligence, ambient available energy harvesting (EH), storage, electrochemical fuel cell integration, and recharging capability, which acts as the Power Layer for the node. The functional node has been prototyped, demonstrated and characterised in a variety of operational modes. It is demonstrable via simulation that, under normal operating conditions within a structural health monitoring application, the node may operate perpetually

    Using Social Media to Increase Accessibility to Online Teaching Resources.

    Get PDF
    The key learning points of Surgical Grand Rounds (SGR) are often not accessible at times of exam revision for students. We sought to use Twitter as an online teaching repository. A SGR Twitter profile was created. 23 SGR presentations were made accessible on Twitter over a 3 month period. 93 students were invited to complete a questionnaire assessing usage of the repository. 84 (90%) in total responded, of these, 25 (80.6%) felt that the online provision of SGR through twitter was useful . The majority (71%) felt that the online content was easily accessible. The novel use of social media is a useful adjunctive educational tool in accessing an online repository of SGR presentations

    Quality of Health Care in the United States: Implications for Pediatric Inflammatory Bowel Disease

    Get PDF
    The Institute of Medicine’s publications To Error is Human and Crossing the Quality Chasm publicized the widespread deficits in U.S. health care quality. Emerging studies continue to reveal deficits in the quality of adult and pediatric care, including subspecialty care. In recent years, key stakeholders in the health care system including providers, purchasers, and the public have been applying various quality improvement methods to address these concerns. Lessons learned from these efforts in other pediatric conditions, including asthma, cystic fibrosis, neonatal intensive care, and liver transplantation may be applicable to the care of children with inflammatory bowel disease

    The s-mote: a versatile heterogeneous multi-radio platform for wireless sensor networks applications

    Get PDF
    This paper presents a novel architecture and its implementation for a versatile, miniaturised mote which can communicate concurrently using a variety of combinations of ISM bands, has increased processing capability, and interoperability with mainstream GSM technology. All these features are integrated in a small form factor platform. The platform can have many configurations which could satisfy a variety of applications’ constraints. To the best of our knowledge, it is the first integrated platform of this type reported in the literature. The proposed platform opens the way for enhanced levels of Quality of Service (QoS), with respect to reliability, availability and latency, in addition to facilitating interoperability and power reduction compared to existing platforms. The small form factor also allows potential of integration with other mobile platforms including smart phones

    A novel and miniaturized 433/868MHz multi-band wireless sensor platform for body sensor network applications

    Get PDF
    Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications

    Cow welfare in grass based milk production systems

    Get PDF
    End of project reportUnder this project, aspects of pasture based milk production systems, namely different milking frequency and feeding strategies as well as genetic selection for improved fitness using the Irish Economic Breeding Index (EBI) were evaluated in terms of dairy cow behaviour, health, immune function and reproductive performance. Additionally, a typical Irish pasture based system was compared to one in which cows were kept indoors in cubicles and fed a total mixed ration for the duration of lactation in order to elucidate the perceived benefits of pasture based systems for dairy cow welfare

    How many came home? Evaluating ex‐situ conservation of green turtles in the Cayman Islands

    Full text link
    Ex-situ management is an important conservation tool that allows the preservation of biological diversity outside natural habitats while supporting survival in the wild. Captive breeding followed by reintroduction is a possible approach for endangered species conservation and preservation of genetic variability. The Cayman Turtle Centre Ltd was established in 1968 to market green turtle (Chelonia mydas) meat and other products and replenish wild populations, thought to be locally extirpated, through captive breeding. We evaluated the effects of this reintroduction program using molecular markers (13 microsatellites, 800bp D-loop and STR mtDNA sequences) from captive breeders (N=257) and wild nesting females (N=57) (sampling period: 2013-2015). We divided the captive breeders into three groups: founders (from the original stock), and then two subdivisions of F1 individuals corresponding to two different management strategies, cohort 1995 ("C1995)" and multicohort F1 ("MCF1"). Loss of genetic variability and increased relatedness was observed in the captive stock over time. We found no significant differences in diversity among captive and wild groups, and similar or higher levels of haplotype variability when compared to other natural populations. Using parentage and sibship assignment, we determined that 90% of the wild individuals were related to the captive stock. Our results suggest a strong impact of the reintroduction program on the present recovery of the wild green turtle population nesting in the Cayman Islands. Moreover, genetic relatedness analyses of captive populations are necessary to improve future management actions to maintain genetic diversity in the long term and avoid inbreeding depression

    Temperature dependence on the mass susceptibility and mass magnetization of superparamagnetic Mn–Zn–ferrite nanoparticles as contrast agents for magnetic imaging of oil and gas reservoirs

    Get PDF
    The mass susceptibility (χmass) and mass magnetization (Mmass) were determined for a series of ternary manganese and zinc ferrite nanoparticles (Mn–Zn ferrite NPs, MnxZn1−xFe2O4) with different Mn:Zn ratios (0.08 ≤ x ≤ 4.67), prepared by the thermal decomposition reaction of the appropriate metal acetylacetonate complexes, and for the binary homologs (MxFe3−xO4, where M = Mn or Zn). Alteration of the Mn:Zn ratio in Mn–Zn ferrite NPs does not significantly affect the particle size. At room temperature and low applied field strength the mass susceptibility increases sharply as the Mn:Zn ratio increases, but above a ratio of 0.4 further increase in the amount of manganese results in the mass susceptibility decreasing slightly, reaching a plateau above Mn:Zn ≈ 2. The compositional dependence of the mass magnetization shows less of a variation at room temperature and high applied fields. The temperature dependence of the mass magnetization of Mn–Zn ferrite NPs is significantly less for Mn-rich compositions making them more suitable for downhole imaging at higher temperatures (>100 °C). For non-shale reservoirs, replacement of nMag by Mn-rich Mn–Zn ferrites will allow for significant signal-to-noise enhancement of 6.5× over NP magnetite
    corecore