402 research outputs found

    Through a Smoother Lens: An expected absence of LCDM substructure detections from hydrodynamic and dark matter only simulations

    Full text link
    A fundamental prediction of the cold dark matter cosmology is the existence of a large number of dark subhalos around galaxies, most of which should be entirely devoid of stars. Confirming the existence of dark substructures stands among the most important empirical challenges in modern cosmology: if they are found and quantified with the mass spectrum expected, then this would close the door on a vast array of competing theories. But in order for observational programs of this kind to reach fruition, we need robust predictions. Here we explore substructure predictions for lensing using galaxy lens-like hosts at z=0.2 from the Illustris simulations both in full hydrodynamics and dark matter only. We quantify substructures more massive than ~ 10^9 M_sun, comparable to current lensing detections derived from HST, Keck, and ALMA. The addition of full hydrodynamics reduces the overall subhalo mass function by about a factor of two. Even for the dark matter only runs, most (~ 85%) lines of sight through projected cylinders of size close to an Einstein radius contain no substructures larger than 10^9 M_sun. The fraction of empty sight lines rises to ~ 95% in full physics simulations. This suggests we will likely need hundreds of strong lensing systems suitable for substructure studies, as well as predictions that include the effects of baryon physics on substructure, to properly constrain cosmological models. Fortunately, the field is poised to fulfill these requirements.Comment: 11 pages, 9 figure

    Direct Detection of Dark Matter Debris Flows

    Full text link
    Tidal stripping of dark matter from subhalos falling into the Milky Way produces narrow, cold tidal streams as well as more spatially extended "debris flows" in the form of shells, sheets, and plumes. Here we focus on the debris flow in the Via Lactea II simulation, and show that this incompletely phase-mixed material exhibits distinctive high velocity behavior. Unlike tidal streams, which may not necessarily intersect the Earth's location, debris flow is spatially uniform at 8 kpc and thus guaranteed to be present in the dark matter flux incident on direct detection experiments. At Earth-frame speeds greater than 450 km/s, debris flow comprises more than half of the dark matter at the Sun's location, and up to 80% at even higher speeds. Therefore, debris flow is most important for experiments that are particularly sensitive to the high speed tail of the dark matter distribution, such as searches for light or inelastic dark matter or experiments with directional sensitivity. We show that debris flow yields a distinctive recoil energy spectrum and a broadening of the distribution of incidence direction.Comment: 22 pages, 7 figures; accepted for publication in PR

    Galactic accretion and the outer structure of galaxies in the CDM model

    Full text link
    We have combined the semi-analytic galaxy formation model of Guo et al. (2011) with the particle-tagging technique of Cooper et al. (2010) to predict galaxy surface brightness profiles in a representative sample of ~1900 massive dark matter haloes (10^12--10^14 M_sol) from the Millennium II Lambda-CDM N-body simulation. Here we present our method and basic results focusing on the outer regions of galaxies, consisting of stars accreted in mergers. These simulations cover scales from the stellar haloes of Milky Way-like galaxies to the 'cD envelopes' of groups and clusters, and resolve low surface brightness substructure such as tidal streams. We find that the surface density of accreted stellar mass around the central galaxies of dark matter haloes is well described by a Sersic profile, the radial scale and amplitude of which vary systematically with halo mass (M_200). The total stellar mass surface density profile breaks at the radius where accreted stars start to dominate over stars formed in the galaxy itself. This break disappears with increasing M_200 because accreted stars contribute more of the total mass of galaxies, and is less distinct when the same galaxies are averaged in bins of stellar mass, because of scatter in the relation between M_star and M_200. To test our model we have derived average stellar mass surface density profiles for massive galaxies at z~0.08 by stacking SDSS images. Our model agrees well with these stacked profiles and with other data from the literature, and makes predictions that can be more rigorously tested by future surveys that extend the analysis of the outer structure of galaxies to fainter isophotes. We conclude that it is likely that the outer structure of the spheroidal components of galaxies is largely determined by collisionless merging during their hierarchical assemblyComment: Accepted by MNRAS. Shortened following referee's report, conclusions unchanged. 21 pages, 15 figure

    The Absolute Age of M92

    Full text link
    The \textit{absolute age} of a simple stellar population is of fundamental interest for a wide range of applications but is difficult to measure in practice, as it requires an understanding of the uncertainties in a variety of stellar evolution processes as well as the uncertainty in the distance, reddening and composition. As a result, most studies focus only on the \textit{relative age} by assuming that stellar evolution calculations are accurate and using age determinations techniques that are relatively independent of distance and reddening. Here, we construct 20,00020,000 sets of theoretical isochrones through Monte Carlo simulation using the Dartmouth Stellar Evolution Program to measure the absolute age of the globular cluster M92. For each model, we vary a range of input physics used in the stellar evolution models, including opacities, nuclear reaction rates, diffusion coefficients, atmospheric boundary conditions, helium abundance, and treatment of convection. We also explore variations in the distance and reddening as well as its overall metallicity and α\alpha enhancement. We generate simulated Hess diagrams around the main-sequence turn-off region from each set of isochrones and use a Voronoi binning method to fit the diagrams to HST ACS data. We find the age of M92 to be 13.80±0.7513.80 \pm 0.75 Gyr. The 5.4%5.4\% error in the absolute age is dominated by the uncertainty in the distance to M92 (∼80%\sim 80\% of the error budget); of the remaining parameters, only the total metallicity, α\alpha element abundance, and treatment of helium diffusion contribute significantly to the total error.Comment: 15 Pages, 14 Figures, 2 Tables; Accepted for Publication A

    The origin of ultra diffuse galaxies: stellar feedback and quenching

    Get PDF
    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies. We show that stellar feedback-generated outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching (from e.g. infall into a galaxy cluster), naturally reproduce the observed population of red UDGs, without the need for high spin halos or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed z=0 red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated galaxies with M_star ~1e8 Msun, low metallicity and a broad range of ages. The most massive simulated UDGs require earliest quenching and are therefore the oldest. Our simulations provide a good match to the central enclosed masses and the velocity dispersions of the observed UDGs (20-50 km/s). The enclosed masses of the simulated UDGs remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. A typical UDG forms in a dwarf halo mass range of Mh~4e10-1e11 Msun. The most massive red UDG in our sample requires quenching at z~3 when its halo reached Mh ~ 1e11 Msun. If it, instead, continues growing in the field, by z=0 its halo mass reaches > 5e11 Msun, comparable to the halo of an L* galaxy. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with mass-to-light ratios similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around Ms~1e8 Msun, both in the field and in clusters.Comment: 20 pages, 13 figures; match the MNRAS accepted versio

    Evolution of giant molecular clouds across cosmic time

    Get PDF
    Giant molecular clouds (GMCs) are well studied in the local Universe, however, exactly how their properties vary during galaxy evolution is poorly understood due to challenging resolution requirements, both observational and computational. We present the first time-dependent analysis of GMCs in a Milky Way-like galaxy and an Large Magellanic Cloud (LMC)-like dwarf galaxy of the FIRE-2 (Feedback In Realistic Environments) simulation suite, which have sufficient resolution to predict the bulk properties of GMCs in cosmological galaxy formation self-consistently. We show explicitly that the majority of star formation outside the galactic centre occurs within self-gravitating gas structures that have properties consistent with observed bound GMCs. We find that the typical cloud bulk properties such as mass and surface density do not vary more than a factor of 2 in any systematic way after the first Gyr of cosmic evolution within a given galaxy from its progenitor. While the median properties are constant, the tails of the distributions can briefly undergo drastic changes, which can produce very massive and dense self-gravitating gas clouds. Once the galaxy forms, we identify only two systematic trends in bulk properties over cosmic time: a steady increase in metallicity produced by previous stellar populations and a weak decrease in bulk cloud temperatures. With the exception of metallicity, we find no significant differences in cloud properties between the Milky Way-like and dwarf galaxies. These results have important implications for cosmological star and star cluster formation and put especially strong constraints on theories relating the stellar initial mass function to cloud properties

    The Mass Profile and Accretion History of Cold Dark Matter Halos

    Full text link
    We use the Millennium Simulation series to study the relation between the accretion history (MAH) and mass profile of cold dark matter halos. We find that the mean density within the scale radius, r_{-2} (where the halo density profile has isothermal slope), is directly proportional to the critical density of the Universe at the time when the main progenitor's virial mass equals the mass enclosed within r_{-2}. Scaled to these characteristic values of mass and density, the mean MAH, expressed in terms of the critical density of the Universe, M(\rho_{crit}(z)), resembles that of the enclosed density profile, M(), at z=0. Both follow closely the NFW profile, suggesting that the similarity of halo mass profiles originates from the mass-independence of halo MAHs. Support for this interpretation is provided by outlier halos whose accretion histories deviate from the NFW shape; their mass profiles show correlated deviations from NFW and are better approximated by Einasto profiles. Fitting both M() and M(\rho_{crit}) with either NFW or Einasto profiles yield concentration and shape parameters that are correlated, confirming and extending earlier work linking the concentration of a halo with its accretion history. These correlations also confirm that halo structure is insensitive to initial conditions: only halos whose accretion histories differ greatly from the NFW shape show noticeable deviations from NFW in their mass profiles. As a result, the NFW profile provides acceptable fits to hot dark matter halos, which do not form hierarchically, and for fluctuation power spectra other than CDM. Our findings, however, predict a subtle but systematic dependence of mass profile shape on accretion history which, if confirmed, would provide strong support for the link between accretion history and halo structure we propose here.Comment: 12 pages, 8 figures, MNRAS 432 1103L (2013

    Dark and luminous satellites of LMC-mass galaxies in the FIRE simulations

    Get PDF
    Within lambda cold dark matter (CDM), dwarf galaxies like the Large Magellanic Cloud (LMC) are expected to host numerous dark matter subhaloes, several of which should host faint dwarf companions. Recent Gaia proper motions confirm new members of the LMC system in addition to the previously known SMC, including two classical dwarf galaxies (M∗ > 105 M; Carina and Fornax) as well as several ultrafaint dwarfs (Car2, Car3, Hor1, and Hyd1). We use the Feedback In Realistic Environments (FIRE) simulations to study the dark and luminous (down to ultrafaint masses, M∗ ∼6×103 M) substructure population of isolated LMC-mass hosts (M200m = 1–3×1011 M) and place the Gaia + DES results in a cosmological context. By comparing number counts of subhaloes in simulations with and without baryons, we find that, within 0.2 r200m, LMC-mass hosts deplete ∼30 per cent of their substructure, significantly lower than the ∼70 per cent of substructure depleted by Milky Way (MW) mass hosts. For our highest resolution runs (mbary = 880 M), ∼ 5–10 subhaloes form galaxies with M∗ ≥ 104 M , in agreement with the seven observationally inferred pre-infall LMC companions. However, we find steeper simulated luminosity functions than observed, hinting at observation incompleteness at the faint end. The predicted DM content for classical satellites in FIRE agrees with observed estimates for Carina and Fornax, supporting the case for an LMC association. We predict that tidal stripping within the LMC potential lowers the inner dark matter density of ultrafaint companions of the LMC. Thus, in addition to their orbital consistency, the low densities of dwarfs Car2, Hyd1, and Hyd2 reinforce their likelihood of Magellanic association
    • …
    corecore