1,049 research outputs found

    Earth orbital lifetime prediction model and program

    Get PDF
    Model definitions and Fortran language to predict earth satellite orbital lifetim

    Let Your CyberAlter Ego Share Information and Manage Spam

    Full text link
    Almost all of us have multiple cyberspace identities, and these {\em cyber}alter egos are networked together to form a vast cyberspace social network. This network is distinct from the world-wide-web (WWW), which is being queried and mined to the tune of billions of dollars everyday, and until recently, has gone largely unexplored. Empirically, the cyberspace social networks have been found to possess many of the same complex features that characterize its real counterparts, including scale-free degree distributions, low diameter, and extensive connectivity. We show that these topological features make the latent networks particularly suitable for explorations and management via local-only messaging protocols. {\em Cyber}alter egos can communicate via their direct links (i.e., using only their own address books) and set up a highly decentralized and scalable message passing network that can allow large-scale sharing of information and data. As one particular example of such collaborative systems, we provide a design of a spam filtering system, and our large-scale simulations show that the system achieves a spam detection rate close to 100%, while the false positive rate is kept around zero. This system has several advantages over other recent proposals (i) It uses an already existing network, created by the same social dynamics that govern our daily lives, and no dedicated peer-to-peer (P2P) systems or centralized server-based systems need be constructed; (ii) It utilizes a percolation search algorithm that makes the query-generated traffic scalable; (iii) The network has a built in trust system (just as in social networks) that can be used to thwart malicious attacks; iv) It can be implemented right now as a plugin to popular email programs, such as MS Outlook, Eudora, and Sendmail.Comment: 13 pages, 10 figure

    Optical matrix elements in tight-binding models with overlap

    Full text link
    We investigate the effect of orbital overlap on optical matrix elements in empirical tight-binding models. Empirical tight-binding models assume an orthogonal basis of (atomiclike) states and a diagonal coordinate operator which neglects the intra-atomic part. It is shown that, starting with an atomic basis which is not orthogonal, the orthogonalization process induces intra-atomic matrix elements of the coordinate operator and extends the range of the effective Hamiltonian. We analyze simple tight-binding models and show that non-orthogonality plays an important role in optical matrix elements. In addition, the procedure gives formal justification to the nearest-neighbor spin-orbit interaction introduced by Boykin [Phys. Rev \textbf{B} 57, 1620 (1998)] in order to describe the Dresselahaus term which is neglected in empirical tight-binding models.Comment: 16 pages 6 figures, to appear in Phys. Rev.

    Entanglement Patterns in Mutually Unbiased Basis Sets for N Prime-state Particles

    Get PDF
    A few simply-stated rules govern the entanglement patterns that can occur in mutually unbiased basis sets (MUBs), and constrain the combinations of such patterns that can coexist (ie, the stoichiometry) in full complements of p^N+1 MUBs. We consider Hilbert spaces of prime power dimension (as realized by systems of N prime-state particles, or qupits), where full complements are known to exist, and we assume only that MUBs are eigenbases of generalized Pauli operators, without using a particular construction. The general rules include the following: 1) In any MUB, a particular qupit appears either in a pure state, or totally entangled, and 2) in any full MUB complement, each qupit is pure in p+1 bases (not necessarily the same ones), and totally entangled in the remaining p^N-p. It follows that the maximum number of product bases is p+1, and when this number is realized, all remaining p^N-p bases in the complement are characterized by the total entanglement of every qupit. This "standard distribution" is inescapable for two qupits (of any p), where only product and generalized Bell bases are admissible MUB types. This and the following results generalize previous results for qubits and qutrits. With three qupits there are three MUB types, and a number of combinations (p+2) are possible in full complements. With N=4, there are 6 MUB types for p=2, but new MUB types become possible with larger p, and these are essential to the realization of full complements. With this example, we argue that new MUB types, showing new entanglement characteristics, should enter with every step in N, and when N is a prime plus 1, also at critical p values, p=N-1. Such MUBs should play critical roles in filling complements.Comment: 27 pages, one figure, to be submitted to Physical Revie

    Unified derivations of measurement-based schemes for quantum computation

    Get PDF
    We present unified, systematic derivations of schemes in the two known measurement-based models of quantum computation. The first model (introduced by Raussendorf and Briegel [Phys. Rev. Lett., 86, 5188 (2001)]) uses a fixed entangled state, adaptive measurements on single qubits, and feedforward of the measurement results. The second model (proposed by Nielsen [Phys. Lett. A, 308, 96 (2003)] and further simplified by Leung [Int. J. Quant. Inf., 2, 33 (2004)]) uses adaptive two-qubit measurements that can be applied to arbitrary pairs of qubits, and feedforward of the measurement results. The underlying principle of our derivations is a variant of teleportation introduced by Zhou, Leung, and Chuang [Phys. Rev. A, 62, 052316 (2000)]. Our derivations unify these two measurement-based models of quantum computation and provide significantly simpler schemes.Comment: 14 page

    Tight-binding study of interface states in semiconductor heterojunctions

    Full text link
    Localized interface states in abrupt semiconductor heterojunctions are studied within a tight-binding model. The intention is to provide a microscopic foundation for the results of similar studies which were based upon the two-band model within the envelope function approximation. In a two-dimensional description, the tight-binding Hamiltonian is constructed such that the Dirac-like bulk spectrum of the two-band model is recovered in the continuum limit. Localized states in heterojunctions are shown to occur under conditions equivalent to those of the two-band model. In particular, shallow interface states are identified in non-inverted junctions with intersecting bulk dispersion curves. As a specific example, the GaSb-AlSb heterojunction is considered. The matching conditions of the envelope function approximation are analyzed within the tight-binding description.Comment: RevTeX, 11 pages, 3 figures, to appear in Phys. Rev.
    corecore