26 research outputs found
Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software.
ObjectiveThe purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software.Materials and methodsMR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic.ResultsOur study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ā„ 0.8), whereas only 7 features were of poor stability (ICC < 0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ā„1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant.ConclusionThe use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics
Risk factors for deaths associated with COVID-19 according to the cause of death classification in Republic of Korea
Objectives This study aimed to classify coronavirus disease 2019 (COVID-19)-related deaths according to whether COVID-19 was listed as the cause of death, and to investigate the differences in demographic characteristics and risk factors for COVID-19 death classifications. Methods A total of 5,625 deaths in South Korea among patients with confirmed COVID-19 from January 20, 2020 to December 31, 2021 were selected. Excluding false reports and unnatural deaths, 5,597 deaths were analyzed. Based on death report data, deaths were classified according to whether the cause of death was listed as COVID-19 (CD) or not (NCD). The epidemiological characteristics and causes of deaths were investigated using descriptive, univariate, and multivariate statistical analyses. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to analyze the risk factors. Results The case fatality ratio was 0.89% and increased with age. Additionally, 96.4% of the subjects had an underlying disease, and 53.4% died in winter. The proportion of NCDs was 9.3%, of whom 19.1% died at home and 39.0% were confirmed to have COVID-19 after death. Malignant neoplasms (102/416 vs. 637/4,442; OR, 1.71; 95% CI, 1.36ā2.16; p<0.001) were significantly associated with NCD. Conclusion This is the first study to analyze risk factors by cause of death using COVID-19 death report data in South Korea. These results are expected to be used as evidence for establishing a death monitoring system that can collect timely information in a new infectious disease pandemic
Changes in the intrinsic severity of severe acute respiratory syndrome coronavirus 2 according to the emerging variant: a nationwide study from February 2020 to June 2022, including comparison with vaccinated populations
Background
As the population acquires immunity through vaccination and natural infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the intrinsic severity of coronavirus disease (COVID-19) is becoming challenging. We aimed to evaluate the intrinsic severity regarding circulating variants of SARS-CoV-2 and to compare this between vaccinated and unvaccinated individuals.
Methods
With unvaccinated and initially infected confirmed cases of COVID-19, we estimated the case severity rate (CSR); case fatality rate (CFR); and mortality rate (MR), including severe/critical cases and deaths, stratified by age and compared by vaccination status according to the period regarding the variants of COVID-19 and vaccination. The overall rate was directly standardized with age.
Results
The age-standardized CSRs (aCSRs) of the unvaccinated group were 2.12%, 5.51%, and 0.94% in the pre-delta, delta, and omicron period, respectively, and the age-standardized CFRs (aCFRs) were 0.60%, 2.49%, and 0.63% in each period, respectively. The complete vaccination group had lower severity than the unvaccinated group over the entire period showing under 1% for the aCSR and 0.5% for the aCFR. The age-standardized MR of the unvaccinated group was 448 per million people per month people in the omicron period, which was 11 times higher than that of the vaccinated group. In terms of age groups, the CSR and CFR sharply increased with age from the 60 s and showed lower risk reduction in the 80 s when the period changed to the omicron period.
Conclusions
The intrinsic severity of COVID-19 was the highest in the delta period, with over 5% for the aCSR, whereas the completely vaccinated group maintained below 1%. This implies that when the population is vaccinated, the impact of COVID-19 will be limited, even if a new mutation appears. Moreover, considering the decreasing intrinsic severity, the response to COVID-19 should prioritize older individuals at a higher risk of severe disease
Efficacy and safety of BVAC-C in HPV type 16- or 18āpositive cervical carcinoma who failed 1st platinum-based chemotherapy: a phase I/IIa study
BackgroundBVAC-C, a B cellā and monocyte-based immunotherapeutic vaccine transfected with recombinant HPV E6/E7, was well tolerated in HPVāpositive recurrent cervical carcinoma patients in a phase I study. This phase IIa study investigates the antitumor activity of BVAC-C in patients with HPV 16ā or 18āpositive cervical cancer who had experienced recurrence after a platinum-based combination chemotherapy.Patients and methodsPatients were allocated to 3 arms; Arm 1, BVAC-C injection at 0, 4, 8 weeks; Arm 2, BVAC-C injection at 0, 4, 8, 12 weeks; Arm 3, BVAC-C injection at 0, 4, 8, 12 weeks with topotecan at 2, 6, 10, 14 weeks. Primary endpoints were safety and objective response rate (ORR) as assessed by an independent radiologist according to Response Evaluation Criteria in Solid Tumors version 1.1. Secondary endpoints included the disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), and overall survival (OS).ResultsOf the 30 patients available for analysis, the ORR was 19.2% (Arm 1: 20.0% (3/15), Arm 2: 33.3% (2/6), Arm3: 0%) and the DCR was 53.8% (Arm 1: 57.1%, Arm 2: 28.6%, Arm3: 14.3%). The median DOR was 7.5 months (95% CI 7.1ānot reported), the median PFS was 5.8 months (95% CI 4.2ā10.3), and the median OS was 17.7 months (95% CI 12.0ānot reported). All evaluated patients showed not only inflammatory cytokine responses (IFN-Ī³ or TNF-Ī±) but also potent E6/E7-specific T cell responses upon vaccinations. Immune responses of patients after vaccination were correlated with their clinical responses.ConclusionBVAC-C represents a promising treatment option and a manageable safety profile in the second-line setting for this patient population. Further studies are needed to identify potential biomarkers of response.Clinical trial registrationClinicalTrials.gov, identifier NCT02866006
Enhanced Immunogenicity of Engineered HER2 Antigens Potentiates Antitumor Immune Responses
For cancer vaccines, the selection of optimal tumor-associated antigens (TAAs) that can maximize the immunogenicity of the vaccine without causing unwanted adverse effects is challenging. In this study, we developed two engineered Human epidermal growth factor receptor 2 (HER2) antigens, K965 and K1117, and compared their immunogenicity to a previously reported truncated HER2 antigen, K684, within a B cell and monocyte-based vaccine (BVAC). We found that BVAC-K965 and BVAC-K1117 induced comparable antigen-specific antibody responses and antigen-specific T cell responses to BVAC-K684. Interestingly, BVAC-K1117 induced more potent antitumor activity than the other vaccines in murine CT26-HER2 tumor models. In addition, BVAC-K1117 showed enhanced antitumor effects against truncated p95HER2-expressing CT26 tumors compared to BVAC-K965 and BVAC-K684 based on the survival analysis by inducing T cell responses against intracellular domain (ICD) epitopes. The increased ICD epitope-specific T cell responses induced by BVAC-K1117 compared to BVAC-K965 and BVAC-K684 were recapitulated in human leukocyte antigen (HLA)-untyped human PBMCs and HLA-A*0201 PBMCs. Furthermore, we also observed synergistic antitumor effects between BVAC-K1117 and anti-PD-L1 antibody treatment against CT26-HER2 tumors. Collectively, our findings demonstrate that inclusion of a sufficient number of ICD epitopes of HER2 in cellular vaccines can improve the antitumor activity of the vaccine and provide a way to optimize the efficacy of anticancer cellular vaccines targeting HER2.Y
Geotechnical characteristics of polystyrene treated sand
Many polymeric materials are recently used in geotechnical practice for enhancing the engineering properties of soils. Among the various polymers, this study aims at investigating the geotechnical properties of silica sand coated with polystyrene(PS), which is rarely studied in geotechnical engineering. The polystyrene coated sand was prepared by polymerizing styrene monomer on the surface of silanized sand with median diameter of 0.467 mm. Testing specimens were prepared at 3 different initial relative densities (30, 50 and 70%) by air pluviation. Comprehensive experiments, including one-dimensional compression test with bender elements and triaxial test, were performed to observe the change in geotechnical properties due to the coating of PS on sand surface. The results demonstrate that the adsorbed polymer plays different roles according to strain levels. At very small strain, the polymer on the sand surface may increase the interparticle contact area by applying additional adhesion force between soil particles, leading to an increase in Gmax. However, with an increase in strain level, the polymer will act as the lubricant between sand particles; therefore, the coated sand can show increased compression index and decreased friction angle
Recommended from our members
Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software.
ObjectiveThe purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software.Materials and methodsMR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic.ResultsOur study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ā„ 0.8), whereas only 7 features were of poor stability (ICC < 0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ā„1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant.ConclusionThe use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics
Children with COVID-19 after Reopening of Schools, South Korea
PURPOSE: To describe pediatric coronavirus disease 2019 (COVID-19) cases after the reopening of schools in the Republic of Korea and their transmission routes.
METHODS: All case report forms and epidemiologic investigation forms for children aged 3ā18 years reported as COVID-19 cases to the National Notifiable Disease Surveillance System from May 1 to July 12, 2020, were reviewed.
RESULTS: After the schools were reopened in May 2020, a total of 127 pediatric COVID-19 cases were confirmed until July 12. Of these, 59 children (46%) were exposed to severe acute respiratory syndrome coronavirus 2 through family and relatives, followed by 18 children (14%) through cram schools or private lessons, 8 children (6%) through multi-use facilities, and 3 children (2%) through school.
CONCLUSIONS: The present data do not suggest an increased risk of COVID-19 transmission in the context of stringent school-based infection prevention measures introduced across the country
Urbanization of scrub typhus disease in South Korea.
BACKGROUND:Scrub typhus is an endemic disease in Asia. It has been a rural disease, but indigenous urban cases have been observed in Seoul, South Korea. Urban scrub typhus may have a significant impact because of the large population. METHODS:Indigenous urban scrub typhus was epidemiologically identified in Seoul, the largest metropolitan city in South Korea, using national notifiable disease data from 2010 to 2013. For detailed analysis of clinical features, patients from one hospital that reported the majority of cases were selected and compared to a historic control group. Chigger mites were prospectively collected in the city using a direct chigger mite-collecting trap, and identified using both phenotypic and 18S rDNA sequencing analyses. Their infection with Orientia tsutsugamushi was confirmed by sequencing the 56-kDa antigen gene. RESULTS:Eighty-eight cases of urban scrub typhus were determined in Seoul. The possible sites of infection were mountainous areas (56.8%), city parks (20.5%), the vicinity of one's own residence (17.0%), and riversides (5.7%). Eighty-seven chigger mites were collected in Gwanak mountain, one of the suspected infection sites in southern Seoul, and seventy-six (87.4%) of them were identified as Helenicula miyagawai and eight (9.2%) as Leptotrombidium scutellare. Pooled DNA extracted from H. miyagawai mites yielded O. tsutsugamushi Boryong strain. Twenty-six patients from one hospital showed low APACHE II score (3.4 Ā± 2.7), low complication rate (3.8%), and no hypokalemia. CONCLUSIONS:We identified the presence of indigenous urban scrub typhus in Seoul, and a subgroup of them had mild clinical features. The chigger mite H. miyagawai infected with O. tsutsugamushi within the city was found. In endemic area, urban scrub typhus needs to be considered as one of the differential febrile diseases and a target for prevention
Tumor-derived osteopontin suppresses antitumor immunity by promoting extramedullary myelopoiesis
Extramedullary myelopoiesis occurs commonly in tumor-bearing animals and is known to lead to accumulation of peripheral myeloid-derived suppressor cells (MDSC), which play an important role in immune escape. However, the cellular and molecular mechanisms by which tumors induce extramedullary myelopoiesis are poorly understood. In this study, we found that osteopontin expressed by tumor cells enhances extramedullary myelopoiesis in a CD44-dependent manner through the Erk1/2-MAPK pathway. Osteopontin-mediated extramedullary myelopoiesis was directly associated with increased MDSCs in tumor-bearing hosts. More importantly, osteopontin silencing in tumor cells delayed both tumor growth and extramedullary myelopoiesis, while the same treatment did not affect tumor growth in vitro. Finally, treatment with an antibody against osteopontin inhibited tumor growth and synergized with cell-based immunotherapeutic vaccines in mediating antitumor immunity. Our findings unveil a novel immunosuppressive role for tumor-derived osteopontin and offer a rationale for its therapeutic targeting in cancer treatment. (C) 2014 AACR.N