25,726 research outputs found

    Bubble Growth in Superfluid 3-He: The Dynamics of the Curved A-B Interface

    Full text link
    We study the hydrodynamics of the A-B interface with finite curvature. The interface tension is shown to enhance both the transition velocity and the amplitudes of second sound. In addition, the magnetic signals emitted by the growing bubble are calculated, and the interaction between many growing bubbles is considered.Comment: 20 pages, 3 figures, LaTeX, ITP-UH 11/9

    Supersonic quantum communication

    Full text link
    When locally exciting a quantum lattice model, the excitation will propagate through the lattice. The effect is responsible for a wealth of non-equilibrium phenomena, and has been exploited to transmit quantum information through spin chains. It is a commonly expressed belief that for local Hamiltonians, any such propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson theorem states that in spin models, all effects caused by a perturbation are limited to a causal cone defined by a constant speed, up to exponentially small corrections. In this work we show that for translationally invariant bosonic models with nearest-neighbor interactions, this belief is incorrect: We prove that one can encounter excitations which accelerate under the natural dynamics of the lattice and allow for reliable transmission of information faster than any finite speed of sound. The effect is only limited by the model's range of validity (eventually by relativity). It also implies that in non-equilibrium dynamics of strongly correlated bosonic models far-away regions may become quickly entangled, suggesting that their simulation may be much harder than that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe

    Fitting Jump Models

    Get PDF
    We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determine the shape of the resulting jump model.Comment: Accepted for publication in Automatic

    Dynamic Matrix Factorization with Priors on Unknown Values

    Full text link
    Advanced and effective collaborative filtering methods based on explicit feedback assume that unknown ratings do not follow the same model as the observed ones (\emph{not missing at random}). In this work, we build on this assumption, and introduce a novel dynamic matrix factorization framework that allows to set an explicit prior on unknown values. When new ratings, users, or items enter the system, we can update the factorization in time independent of the size of data (number of users, items and ratings). Hence, we can quickly recommend items even to very recent users. We test our methods on three large datasets, including two very sparse ones, in static and dynamic conditions. In each case, we outrank state-of-the-art matrix factorization methods that do not use a prior on unknown ratings.Comment: in the Proceedings of 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    How to identify the youngest protostars

    Get PDF
    We study the transition from a prestellar core to a Class 0 protostar, using SPH to simulate the dynamical evolution, and a Monte Carlo radiative transfer code to generate the SED and isophotal maps. For a prestellar core illuminated by the standard interstellar radiation field, the luminosity is low and the SED peaks at ~190 micron. Once a protostar has formed, the luminosity rises (due to a growing contribution from accretion onto the protostar) and the peak of the SED shifts to shorter wavelengths (~80-100 micron). However, by the end of the Class 0 phase, the accretion rate is falling, the luminosity has decreased, and the peak of the SED shifts back towards longer wavelengths (90-150 micron). In our simulations, the density of material around the protostar remains sufficiently high well into the Class 0 phase that the protostar only becomes visible in the NIR if it is displaced from the centre dynamically. Raw submm/mm maps of Class 0 protostars tend to be much more centrally condensed than those of prestellar cores. However, when convolved with a typical telescope beam, the difference in central concentration is less marked, although the Class 0 protostars appear more circular. Our results suggest that, if a core is deemed to be prestellar on the basis of having no associated IRAS source, no cm radio emission, and no outflow, but it has a circular appearance and an SED which peaks at wavelengths below ~170 micron, it may well contain a very young Class 0 protostar.Comment: Accepted by A&A (avaliable with high-res images at http://carina.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/publications

    Analytical model of brittle destruction based on hypothesis of scale similarity

    Full text link
    The size distribution of dust particles in nuclear fusion devices is close to the power function. A function of this kind can be the result of brittle destruction. From the similarity assumption it follows that the size distribution obeys the power law with the exponent between -4 and -1. The model of destruction has much in common with the fractal theory. The power exponent can be expressed in terms of the fractal dimension. Reasonable assumptions on the shape of fragments concretize the power exponent, and vice versa possible destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure

    Scalable reconstruction of density matrices

    Full text link
    Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.Comment: 9 pages, 5 figures, replaced with published versio

    Quantum-secured imaging

    Get PDF
    We have built an imaging system that uses a photon's position or time-of-flight information to image an object, while using the photon's polarization for security. This ability allows us to obtain an image which is secure against an attack in which the object being imaged intercepts and resends the imaging photons with modified information. Popularly known as "jamming," this type of attack is commonly directed at active imaging systems such as radar. In order to jam our imaging system, the object must disturb the delicate quantum state of the imaging photons, thus introducing statistical errors that reveal its activity.Comment: 10 pages (double spaced), 5 figure
    corecore